
Programming and Data Structures
Release 0.3

Amir Kamil

Sep 08, 2024

CONTENTS

I Foundations 2

1 Introduction 3

2 C++ Fundamentals 4

3 Types 9
3.1 Arithmetic and Comparisons . 10
3.2 Library Types . 12

4 Control Structures 15

5 Procedural Abstraction 18
5.1 Code Organization in C++ . 19
5.2 The Compilation Process . 21
5.3 Specification Comments (RMEs) . 21
5.4 Properties of Procedural Abstraction . 23

6 Testing 24

7 Machine Model I 26
7.1 Pointers . 30

8 Machine Model II 34
8.1 Pointer Errors . 34
8.2 Function Calls and the Call Stack . 37

II Data Abstraction 42

9 The const Keyword 43
9.1 References and const . 44
9.2 Pointers and const . 44
9.3 const Conversions . 45

10 Structs 47
10.1 Compound Objects and const . 52

11 Abstract Data Types in C 54
11.1 Representation Invariants . 58
11.2 Plain Old Data . 59
11.3 Abstraction Layers . 60

i

11.4 Testing an ADT . 61

12 Command-Line Arguments 64

13 Input and Output (I/O) 66
13.1 I/O Redirection . 66
13.2 Example: Adding Integers . 67
13.3 File I/O . 68

14 More on Streams 72
14.1 String Streams . 73

15 Program Design 75

16 Abstract Data Types in C++ 76
16.1 Implicit this-> . 78
16.2 Member Accessibility . 80
16.3 Constructors . 81
16.4 Default Initialization and Default Constructors . 83
16.5 Get and Set Functions . 85
16.6 Information Hiding . 87
16.7 Testing a C++ ADT . 88
16.8 Member-Initialization Order . 89
16.9 Delegating Constructors . 89

17 Derived Classes and Inheritance 91
17.1 Ordering of Constructors and Destructors . 95
17.2 Name Lookup and Hiding . 97

18 Polymorphism 100
18.1 Function Overloading . 100
18.2 Subtype Polymorphism . 101
18.3 Static and Dynamic Binding . 103
18.4 dynamic_cast . 104
18.5 Member Lookup Revisited . 105
18.6 The override Keyword . 107
18.7 Abstract Classes and Interfaces . 108

III Containers and Dynamic Memory 110

19 Containers and Iterators 111
19.1 Range-Based For Loops . 111

20 Time Complexity 114

21 Arrays 115
21.1 Arrays and Pointers . 118
21.2 Pointer Arithmetic . 119
21.3 Array Indexing . 120
21.4 More on Array Decay . 122
21.5 The End of an Array . 122
21.6 Array Traversal . 123
21.7 Arrays and const . 124

ii

22 Array-based Containers 126
22.1 Set Operations . 126
22.2 Code Example . 127
22.3 Public Interface . 127
22.4 static Data Members . 128
22.5 Data Representation . 128
22.6 size_t . 129
22.7 Implementation . 130
22.8 Sorted Representation . 132

23 Container ADTs and Polymorphism 136
23.1 Operator Overloading . 136
23.2 Parametric Polymorphism . 138
23.3 Static vs. Dynamic Polymorphism . 146

24 Memory Models and Dynamic Memory 150
24.1 Static Local Variables . 150
24.2 Automatic Storage Duration . 151
24.3 Address Space . 152
24.4 The new and delete Operators . 153
24.5 Dynamic Arrays . 155
24.6 Lifetime of Class-Type Objects . 156
24.7 Dynamic-Memory Errors . 158
24.8 Uses for Dynamic Memory . 160

25 Managing Dynamic Memory 161
25.1 RAII . 162
25.2 Growable Set . 164

26 The Big Three 168
26.1 Copy Constructor . 169
26.2 Assignment Operator . 170
26.3 Shallow and Deep Copies . 171
26.4 The Law of the Big Three . 175
26.5 Example: Calls to the Big Three . 175
26.6 Destructors and Polymorphism . 177

27 Linked Lists 181
27.1 Traversing a Linked List . 188
27.2 Linked List Big Three . 188
27.3 Insertion and Removal at the End . 190
27.4 List Template . 191

28 Implementing Iterators 193
28.1 Iterator Definition . 196
28.2 Friend Declarations . 201
28.3 Generic Iterator Functions . 202
28.4 Iterator Invalidation . 204
28.5 Type Deduction . 205

IV Functional Programming 207

29 Function Objects 208
29.1 Function-Pointer Types . 211

iii

29.2 Function-Pointer Parameters . 212
29.3 Functors . 213
29.4 Comparators . 216
29.5 Iterating over a Sequence . 218

30 Impostor Syndrome 220

31 Recursion 222
31.1 Tail Recursion . 226
31.2 Kinds of Recursion . 228
31.3 Iteration vs. Recursion . 229

32 Structural Recursion 230
32.1 Recursive Lists . 230
32.2 Trees . 232

33 Binary Search Trees (BSTs) 237
33.1 The BinarySearchTree Interface . 239
33.2 BST-Based Set . 242

34 Maps and Pairs 244

V Odds and Ends 247

35 Error Handling and Exceptions 248
35.1 Global Error Codes . 248
35.2 Object Error States . 249
35.3 Return Error Codes . 249
35.4 Exceptions . 250
35.5 Error Handling vs. Undefined Behavior . 261

VI Supplemental Material 262

36 Introduction to C++ 263
36.1 A Simple Program . 263
36.2 Static Typing . 265
36.3 Compound Data . 266
36.4 Value Semantics . 268
36.5 Example: Stickman . 272

37 Solving Problems with Recursion 288
37.1 Pancake Sort . 288
37.2 Tower of Hanoi . 290
37.3 Counting Change . 292

38 Containers of Pointers 295
38.1 Sorting Containers of Pointers . 300
38.2 Containers of Polymorphic Objects . 301

39 C and C++ Strings 302
39.1 C-Style Strings . 302
39.2 C++ Strings . 307

40 About 309

iv

Programming and Data Structures, Release 0.3

List of Lectures

1) Introduction and C++

2) Types, Control Structures, and Procedural Abstraction

3) Machine Model I

4) Machine Model II

5) Const, Structs, and ADTs in C

6) Streams and I/O

7) Program Design

8) Abstract Data Types in C++

9) Derived Classes and Inheritance

10) Polymorphism

11) Containers and Iterators

12) Time Complexity, Arrays, and Pointer Arithmetic

13) Array-based Containers I

14) Array-based Containers II

15) Memory Models and Dynamic Memory

16) Managing Dynamic Memory

17) The Big Three

18) Linked Lists

19) Implementing Iterators

20) Function Objects and Impostor Syndrome

21) Recursion

22) Structural Recursion

23) Binary Search Trees and Maps

24) Error Handling and Exceptions

CONTENTS 1

Part I

Foundations

2

CHAPTER

ONE

INTRODUCTION

Welcome to EECS 280: Programming and Introductory Data Structures! This course covers several fundamental
concepts in programming, including basic principles such as procedural and data abstraction, resource management,
and basic data structures. The following is the official course description:

Techniques and algorithm development and effective programming, top-down analysis, structured pro-
gramming, testing, and program correctness. Program language syntax and static and runtime semantics.
Scope, procedure instantiation, recursion, abstract data types, and parameter passing methods. Structured
data types, pointers, linked data structures, stacks, queues, arrays, records, and trees.

This course, and Computer Science in general, is not about computers, as stated by Hal Abelson, author of the seminal
textbook Structure and Interpretation of Computer Programs:

[Computer science] is not really about computers – and it’s not about computers in the same sense
that physics is not really about particle accelerators, and biology is not about microscopes and Petri
dishes. . . and geometry isn’t really about using surveying instruments.

Instead, the purpose of this course is to examine the generalizable concepts in programming. To understand what a
generalizable concept is, let’s take a diversion from programming and consider a concept in baking. How many eggs do
you put in a cake (assuming a single-layer, eight-inch cake)? Eggs serve several functions in a cake, including providing
structure, influencing the texture and smoothness, providing moisture, and contributing to the taste of the cake. As an
experiment, Summer Stone of The Cake Blog varied the number of eggs in a recipe between zero and four, finding the
following:

• 0 eggs: The cake was short and dense, and it fell apart when cut. It also tasted very much like flour.

• 1 egg: The cake was dense and compact, but held together when cut and had a pleasant taste.

• 2 eggs: The cake had a greater height and lighter texture and also had a pleasant taste.

• 3 eggs: The cake was even taller and lighter, with a slightly spongy texture, and still had a pleasant taste.

• 4 eggs: The cake was short, dense, and rubbery and tasted very much like egg.

The generalizable concept here is that eggs provide structure to a cake, and that more eggs results in a lighter cake, up
to a point. Thus, the structure and texture of a cake can be manipulated by varying the number of eggs, as long as there
aren’t too few or too many.

The topics that we will cover in this course concern the generalizable concepts in programming, including procedural
abstraction, data abstraction, dynamic resource management, object orientation, and many others. We will use C++
as our vehicle for learning these concepts, and we will implement several large programming projects to develop our
experience and understanding of the concepts. However, learning C++ and implementing projects aren’t the end goal;
rather, they are the mechanisms we use to explore the topics.

3

https://en.wikipedia.org/wiki/Hal_Abelson
http://mitpress.mit.edu/sicp
http://thecakeblog.com/2011/11/eggsactly-perfect-baking.html

CHAPTER

TWO

C++ FUNDAMENTALS

C++ is a programming language, a language designed for expressing programs at a higher level than machine code,
which is what directly runs on a computer’s central processing unit (CPU). For example, Intel and AMD processors
(typically used in Windows machines) implement the x86_64 instruction set architecture (ISA), which results in ma-
chine code that looks like the following:

push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], 3
mov DWORD PTR [rbp-8], 4
mov edx, DWORD PTR [rbp-4]
mov eax, DWORD PTR [rbp-8]
add eax, edx

Apple CPUs, as well as most mobile processors, implement the AArch64 ISA, with code like:

sub sp, sp, #16
mov w0, 3
str w0, [sp, 12]
mov w0, 4
str w0, [sp, 8]
ldr w1, [sp, 12]
ldr w0, [sp, 8]
add w0, w1, w0

Machine code is extremely low level, so rather than writing programs in it directly, we prefer to use a higher-level
programming language that allows us to write more readable code that can work on many different CPU architectures.
We can then use a compiler to translate the program into the equivalent machine code to run directly on a CPU.
Examples of compilers for C++ include g++ (the GNU C++ compiler), Clang, and MSVC (Microsoft Visual C++).

Alternatively, we can run a higher-level program through an interpreter, which rather than translating the program into
machine code, directly emulates the behavior of the program. Lobster is an example of an interpreter for (a subset of)
C++.

To illustrate the compilation process, let’s start with a small C++ program that prints to standard output (typically
displaying in a console/terminal):

#include <iostream>

using namespace std;

int main() {
// print a greeting

(continues on next page)

4

https://lobster.eecs.umich.edu

Programming and Data Structures, Release 0.3

(continued from previous page)

cout << "Hello World!" << endl;

// Declare some variables
int x = 10 + 5;
int y = 0;
y = x;
x = 20;

// Print out the result
cout << "x = " << x << ", y = " << y << endl;

}

We will momentarily discuss what each part of the program means, but first let’s compile and run the code. Assuming
that the code is located in the file hello.cpp, we can compile it from the terminal (or command line) with g++:

g++ --std=c++17 hello.cpp -o hello.exe

The items following g++ are arguments (or command-line arguments to be precise) to the compiler:

• --std=c++17 tells the compiler to use the C++17 version of the language

• hello.cpp is our program

• -o hello.exe tells the compiler to name the resulting machine-code file, or executable, as hello.exe

After running the above command, we can now run the resulting executable from the command line:

./hello.exe

Here, ./ tells the terminal that the executable is in the current directory (or folder). The terminal runs the program and
displays the printed output:

Hello World!
x = 20, y = 15

Returning to the program source code, the first line (#include <iostream>) imports functionality from the C++
standard library, allowing us to write output to the screen and read input from the keyboard. In particular, it defines
cout, which we can use with the insertion operator << to print values to standard output. The cout variable is actually
defined inside the std (short for “standard”) namespace, which is a way to organize names to avoid conflicts with other
libraries. There are several ways we can use a name defined within a namespace:

• with a qualified name that includes the namespace, as in std::cout:

#include <iostream>

int main() {
// print a greeting
std::cout << "Hello World!" << std::endl;

}

• by first importing each name we want to use directly via using declarations, after which we can use the name
without qualification:

#include <iostream>

(continues on next page)

5

Programming and Data Structures, Release 0.3

(continued from previous page)

using std::cout;
using std::endl;

int main() {
// print a greeting
cout << "Hello World!" << endl;

}

• by importing all the names from a namespace at once:

#include <iostream>

using namespace std;

int main() {
// print a greeting
cout << "Hello World!" << endl;

}

Be careful with the last option, as there can be many names defined within a namespace, and importing them all
increases the likelihood of there being a conflict with names defined outside of the namespace. For simplicity, we will
use it here.

After the initial two lines, we have a definition of a main() function, which is the entry point of a C++ program. The
function returns an integer, represented by the int type, and that comes before the function name itself. For now, we
define main() to not take any arguments. (If the function takes arguments, there would be function parameters between
the parentheses; we will return to this later.) Then we have the body of the function, enclosed by a pair of matching
curly braces. Within the body, we have a sequence of statements, which are executed in order. The first line of the body
is actually a comment rather than a statement:

// print a statement

This does not do anything, but it serves as documentation for someone reading the code. We can write a comment by
starting it with double slashes, in which case the rest of the line comprises the comment. Alternatively, we can use the
sequence /* to open a comment and */ to close it, which allows a comment to span multiple lines or part of a line:

int main() /* a comment here */ {
/* here is a
multiline
comment */

}

After the initial comment, we have a statement that prints to standard output:

cout << "Hello World!" << endl;

We use the insertion operator << to insert the string "Hello World!" – a string is a sequence of characters, and we
can write one directly in our program by enclosing it in double quotes. (Be aware that unlike some other languages,
C++ strings cannot span multiple lines in the source code.) After inserting the string, we chain another insertion of
endl, which is defined by <iostream> in the std namespace. Inserting endl writes a newline, and it also flushes the
output, meaning that it forces the output to appear immediately. (Without flushing, the output can be buffered until
a later time, which can result in better performance at the expense of delaying output.) Finally, we end the statement
with a semicolon, which is required at the end of simple statements in C++. Unlike Python and some other languages,

6

Programming and Data Structures, Release 0.3

whitespace is not generally significant in C++ programs, so the end of a line does not automatically end a statement.
We can see what happens if we forget a semicolon:

#include <iostream>

using namespace std;

int main() {
// print a greeting
cout << "Hello World!" << endl // oops

}

Attempting to compile the program results in the following:

hello.cpp:7:33: error: expected ';' after expression
cout << "Hello World!" << endl // oops

^
;

1 error generated.

This is a compile error, and it is the compiler informing us that we have a mistake in our code. The compiler does not
produce an executable in such a case, and we have to fix our error and recompile.

Continuing where we left off in our program, we have the following line:

int x = 10 + 5;

This is a variable declaration, which introduces a new variable, and in C++, it has three components:

• the type of the variable (int for an integer in this case)

• the name of the variable (x here)

• an optional initialization expression (10 + 5 above), which specifies the initial value of the variable

Unlike languages like Python, C++ is statically typed, meaning that the type of a variable must be known at compile
time, generally by explicitly specifying the type in the variable’s declaration. And the type of the variable never changes
– for as long as it exists, it will have the type specified in its declaration.

A variable’s initialization is an expression, which is a fragment of code that evaluates to some value. (An expression
may also have a side effect, which modifies the state of the program in some way, such as by printing to the screen or
changing the value of an existing variable.) Expressions may be composed of the following elements:

• literals, which specify a value directly in source code, such as 42 or "Hello World!"

• variables

• functions calls, such as sqrt(x)

• operators such as + and <<

In the case of the variable declaration above, the initialization expression 10 + 5 evaluates to the value 15, which then
becomes the initial value of the variable x.

We will see later when initialization expressions are required. For now, we note that for a variable of type int, without
an initialization expression, the variable would have an undefined value, which would result in undefined behavior if
we were to use its value. Undefined behavior means that we cannot rely on the outcome – the program might work, or
it might crash, or it might empty your bank account. Thus, undefined behavior should be avoided at all costs.

Examining the following lines,

7

Programming and Data Structures, Release 0.3

int y = 0;
y = x;
x = 20;

we see that the variable y is introduced with initial value 0. Then we have an assignment, which copies the value from
the right-hand side into the left – in this case, the value of x, which is 15, is copied into y. The next line then assigns
the value 20 to x. This, when the last line

cout << "x = " << x << ", y = " << y << endl;

executes, we see that x has the value 20 and y the value 15.

A variable can only be used when it is in scope. A scope is a region of source code where names are meaningful,
and such a region often corresponds to a block of code delimited by curly braces. A variable is in scope starting at its
declaration until the end of the scope region in which it is defined. For example, consider the following code:

int main() {
int x = 5; // x is now in scope

cout << y << endl; // COMPILE ERROR -- y is not in scope

int y = -3; // y is now in scope

if (x > y) {
int a = x - y; // a is now in scope
cout << a << endl;

} // a is no longer in scope

cout << a << endl; // COMPILE ERROR -- a is not in scope
}

The variable y is not in scope until its declaration, so attempting to use it in the second statement is an error. Below, the
curly braces associated with the conditional define a new scope region, in which the variable a is introduced. Outside
of the curly braces, a is no longer in scope, so using it in the last statement is erroneous. The compiler checks for us
whether or not variables are in scope, reporting errors if we try to use one that is not.

We have seen a simple program, how to compile and run it, and some fundamental C++ elements. We proceed to
discuss more complex C++ features, such as type conversions, standard-library types, functions, and control flow.

8

CHAPTER

THREE

TYPES

Previously, we saw that in C++, a variable is declared with its type, and the remains its type as long as the variable
exists. C++ has several fundamental (also called primitive or atomic) types that are built-in to the language and always
available, without any #include lines. The following are a few such types:

• int represents a signed (positive, negative, or zero) integer, and in most implementations, can represent integers
between 2−31 and 231 − 1, inclusive

int x = 3;

• double represents a floating-point number1

double y = 2.5;

• bool represents a Boolean value, i.e. true or false

bool z = true;

• char represents a single character (as opposed to a string, which is a sequence of characters), and a character
literal is written with single quotes

char c = 'w';

As with int, a variable of fundamental type must be explicitly initialized – otherwise its value is undefined.

int x; // undefined value
double y; // undefined value
bool z; // undefined value
char c; // undefined value

The compiler’s type system detects misuse of types. For instance, the following attempts to initialize a double with a
string literal, which is not a compatible type:

double y = "llama"; // COMPILE ERROR

On the other hand, there are some combinations of types for which C++ performs an implicit conversion, allowing one
to be used where the other is expected. For instance, an int can be converted to a double, and vice versa:

int x = 3.1; // narrowing conversion -- truncated to 3
double y = 42; // widening conversion -- value unchanged

Similarly, numeric types can be converted to bool, with zero values converted to false and non-zero values to true.
1 C++ also has a float type that represents floating-point numbers. A double typically uses twice the memory space of a float (hence the

name), and it can represent a much larger range of values.

9

Programming and Data Structures, Release 0.3

bool a = 3.1; // true
bool b = 0; // false

Implicit conversions, while often useful, can also be a source of error. Consider the following code, which introduces
a max() function that computes the maximum of two values. (We will discuss function definitions shortly.)

double max(double x, double y) {
int result = x;
if (y > x) {
result = y;

}
return result;

}

Suppose we have the call max(3.4, 3.1). The first line of the function implicitly converts the value of x, which is
3.4, to an int, so that result contains the value 3. Then it is the case that y, whose value is 3.1, is larger than result,
so result is assigned the truncated value of y, which again results in 3. Thus, the function returns the value 3 instead
of 3.4.

Rather than relying on implicit conversions, which can be hard to detect when reading code, we can also do an explicit
conversion via a cast. Depending on the types involved, C++ may require a cast, while in other cases it is optional. The
following is an example of casting a double value to an int:

double x = 4.2;
int y = x; // implicit conversion -- easy to miss
int z = static_cast<int>(x); // explicit conversion -- obvious in code

While there are other kinds of casts, static_cast is the most common and the one we recommend.

3.1 Arithmetic and Comparisons

C++ supports common arithmetic operations, such as addition (+), subtraction (-), multiplication (*), division (/), and
modulo (%). The behavior of these operators depends on the types of the operand – for example, adding two int values
together produces an int, while adding two double values produces a double. The same holds for division, where
dividing two int values truncates the result to produce another int value:

cout << (1 / 2) << endl; // prints 0

We can obtain a double value by ensuring that one of the operands is a double:

cout << (1.0 / 2) << endl; // prints 0.5
cout << (1 / 2.) << endl; // prints 0.5
cout << (static_cast<double>(1) / 2) << endl; // prints 0.5

When the operand types differ as above, one operand is promoted to the type of the other, generally to the one that
allows for more precision. In the cases above, the int operand is promoted to double as part of the division operation.

The modulo operator requires both operands to be integers. The std::modf() function in the <cmath> library can
be used on floating-point operands. (Similarly, the std::pow() function in <cmath> does exponentiation – C++ does
not have an operator for that.)

As an example of modulo, the following functions convert a total number of seconds to whole minutes and leftover
seconds, respectively:

3.1. Arithmetic and Comparisons 10

Programming and Data Structures, Release 0.3

int minutes(int seconds) {
return seconds / 60;

}

int remaining_seconds(int seconds) {
return seconds % 60;

}

int main() {
int total = 153;
int min = minutes(total); // 2
int sec = remaining_seconds(total); // 33

}

We rely on integer division to truncate the result in minutes(), and we use the modulo operator in
remaining_seconds() to compute the remainder of the total number of seconds with 60.

C++ also has standard comparison operators: equality (==), inequality (!=), less (<), less or equal (<=), greater (>), and
greater or equal (>=). However, avoid two pitfalls when using these operators:

• Be wary about comparing floating-point numbers that result from arithmetic operations – floating-point numbers
cannot in general be represented exactly on a computer, so we can get unexpected results due to the loss of
precision:

cout << (0.1 + 0.2 == 0.3) << endl; // typically prints 0 (false)

In such cases, values should be compared to within some margin of error rather than exactly:

bool almost_equal(double x, double y, double epsilon) {
return std::abs(x - y) < epsilon;

}

...

cout << almost_equal(0.1 + 0.2, 0.3, 0.00001) << endl; // prints 1 (true)

Here, we use std::abs() to compute the absolute value of the difference between the two values, then compare
against our margin of epsilon.

• C++ does not support Python-style chaining of comparisons:

int x = 10;
cout << (3 < x < 7) << endl; // prints 1 (true)

In this example, 3 < x produces true, which is then promoted to the integer value of 1 for the subsequent com-
parison with 7. Since 1 < 7, the result is true.

Rather than chaining comparisons, we need to use Boolean logic to combine the results of two separate compar-
isons:

cout << (3 < x && x < 7) << endl; // prints 0 (false)

More on logical operations below.

3.1. Arithmetic and Comparisons 11

Programming and Data Structures, Release 0.3

3.2 Library Types

Aside from the fundamental types that are always available to C++ programs, individual headers in the standard library
define additional types. For instance, some commonly used types include std::string defined by the <string>
header, std::vector defined by the <vector> header, and std::pair defined by the <utility> header.

The std::string type represents an ordered sequence of characters. Similar to the initial program we saw last time,
we first need to import the relevant header to get access to the type. We can then either use the qualified name with
the std:: prefix, or include a using declaration to allow us to use string without qualification. The following is an
example:

#include <iostream>
#include <string>

using namespace std;

int main() {
string str1 = "make a ";
string str2 = "wish";

str1 < str2; // true, alphabetic comparison

cout << str1.size() << endl; // 7 (includes spaces)

string str3 = str1 + str2; // "make a wish"
str3[0] = str3[7];
str3[7] = 'f';
cout << str3 << endl; // "wake a fish";

}

We start by declaring and initializing two string variables. We can compare them with < and other operators – the
strings are compared lexicographically, meaning that the characters at each position are compared in order according
to the underlying numerical value for the character. In the case above, since 'm' comes before 'w', str1 compares
less than str2. We can obtain the length of a string by calling .size() on it (the dot here is necessary, and we’ll
see how this gets implemented later when we discuss classes and member functions). We can concatenate two strings
with the + operator and use square brackets to read or write an individual character in a string. In the code above,
we concatenate str1 and str2 to produce "make a wish". Then we copy the character at index 7, which is 'w`,
to position 0, resulting in "wake a wish". Finally, we set the character at index 7 to 'f', which gives us the string
"wake a fish".

Aside from characters, we might want to keep track of a sequence of other elements, such as int values. A
std::vector is a generic sequence type that allows us to specify the type of element it holds. For instance, the
following creates both a vector of double values and one that holds string values:

#include <vector>

using namespace std;

vector<double> nums = {1, 5, 3.5, 6.5};
vector<string> pets = {"cat", "dog", "fish"};

Here, we initialize each vector with an explicit set of values. There are other ways to initialize a vector:

3.2. Library Types 12

Programming and Data Structures, Release 0.3

vector<int> v; // initialize v to be empty (NOT undefined)
vector<int> v(5); // initialize v to contain five zeros
vector<int> v(3, 42); // initialize v to contain three 42's

As with a string, we can use square brackets to index into a vector:

vector<int> v = {3, 5, 42, 28};
cout << v[0] << endl;
v[3] = 7;
v[4] = 100; // out of bounds... undefined behavior!

Be careful not to access an index that is out of bounds – such an access results in undefined behavior. Alternatively, we
can use the .at() function, which checks whether we are within the bounds and throws an exception if we are not:

vector<int> v = {3, 5, 42, 28};
cout << v[0] << endl;
v.at(3) = 7;
v.at(4) = 100; // out of bounds... throws an exception

Assuming we don’t handle the exception, this causes the program to crash, which is better than undefined behavior
– the crash immediately tells us we did something wrong, and we can run the code through a debugger to get more
details.

We can also modify the size of a vector by adding and removing elements. In particular, the .push_back() function
adds an element to the end, and the .pop_back() function removes the last element. We can also remove all elements
with .clear():

vector<int> v;
// v contains {}

v.push_back(1);
v.push_back(2);
v.push_back(3);
// v contains {1, 2, 3}

v.pop_back();
// v contains {1, 2}

v.clear();
// v contains {}

A few other useful vector functions are the following:

• .size() returns the number of elements in the vector

• .front() returns a reference to the first element

• .back() returns a reference to the last element

• .empty() returns whether or not the vector is empty

For both strings and vectors, .size() returns the size as the size_t type, which is an unsigned integer, meaning that
it cannot represent negative values. If we compare to a signed integer such as an int, the compiler may warn us that
we are comparing a signed and unsigned integer, which might produce surprising results:

3.2. Library Types 13

Programming and Data Structures, Release 0.3

int x = -3;
size_t s = 5;
cout << (s > x) << endl; // prints 0 (i.e. false)

The following is an example of a compiler warning for this:

foo.cpp:9:14: warning: comparison of integers of different signs:
'size_t' (aka 'unsigned long') and 'int' [-Wsign-compare]

cout << (s > x) << endl;
~ ^ ~

1 warning generated.

To avoid this, we can use a cast to ensure that we are comparing values with the same “signedness”:

cout << (static_cast<int>(s) > x) << endl; // prints 1 (i.e. true)

One last library type we examine now is std::pair, which represents a pair of values rather than an arbitrary sequence.
The following is an example of using pairs:

#include <utility>

int main() {
std::pair<int, bool> p1; // initialized to {0, false}
std::pair<int, bool> p2 = {-3, true};
p1.first = 7;
p1.second = true;
// p1 now is {7, true}

std::pair<string, double> p3; // initialized to {"", 0.0}
std::pair<string, double> p4 = {"hello", 73};
p3 = p4; // copy the values from p4 to p3
// p3 now is {"hello", 73}

}

3.2. Library Types 14

CHAPTER

FOUR

CONTROL STRUCTURES

C++ is an imperative language, meaning that we specify computation as a sequence of statements. Like other languages,
we often organize statements into functions, which we can then use as abstractions; we will return to this shortly. The
syntax of a function definition is as follows:

<return type> <function name>(<optional parameters>) {
<body statements>

}

The return type is specified first, and it corresponds to the type of value that the function returns. In some cases, a
function does not return a value at all, in which case we use the special type void to specify that this is the case:

void print_value(int x) {
cout << x << endl;

}

If a function has a non-void return type, we explicitly provide the return value using a return statement:

double square(double x) {
return x * x;

}

We need to ensure that every path through a non-void function reaches a return statement that provides a value com-
patible with the return type. Otherwise, the behavior of the function is undefined, and the compiler may generate a
warning or error.2

After the return type, we specify the name of the function, and if it takes arguments, the function parameters within
the following parentheses. A parameter specifies both the type of the value it expects, as well as the name we use to
refer to the corresponding argument within the function body. Finally, we have the body consisting of a sequence of
statements enclosed by curly braces.

We can specify more complex control flow within a function through the use of compound statements such as condi-
tionals and loops. The following demonstrates a conditional:

double abs(double x) {
if (x < 0) {
return -x;

} else {
return x;

}
}

2 The one exception in C++ is the main() function, which implicitly returns the value 0 if no return statement is reached. However, this is not
the case for any other function, even if its return type is int.

15

Programming and Data Structures, Release 0.3

We use the if keyword to introduce a conditional, followed by a test expression within parentheses. The “then” branch
can be a single statement, or it can be a block of statements enclosed by curly braces. We recommend using blocks, as
that makes it clear what is part of a branch and what isn’t. For the “else” branch, we use the else keyword followed
by a statement or block. We can also chain conditionals using else if:

double describe(int x) {
if (x < 0) {

cout << "negative" << endl;
} else if (x > 0) {
cout << "positive" << endl;

} else {
cout << "zero" << endl;

}
}

At most one branch a conditional chain may execute.

A for statement can be used to express a loop that repeats until some condition is false. Its syntax is as follows:

for (<initialization>; <test>; <update>) {
<body statements>

}

The initialization is run once at the beginning of the loop, and it can introduce new variables – the scope of such a
variable is just the loop itself. The test is run before each iteration of the loop – if the test is true, the loop body runs,
otherwise the loop exits. The update is run after each loop iteration completes.3 As with a conditional, the body may
be a single statement or a block – we recommend the latter.

As an example, let’s compute the sum of the elements in a vector:

vector<double> values = /* fill with some values */;
double sum = 0;
for (size_t i = 0; i < values.size(); ++i) {

sum += values[i];
}

We initialize a new variable i with value 0, representing the current index into the vector. We declare i to be of
type size_t, so that we don’t get a compiler warning by comparing it against values.size(), which produces a
size_t. We execute the loop body as long as our index i is less than the size of the vector. After each iteration, i gets
incremented, and the loop exits once its value is equal to values.size().

In addition to for loops, C++ has while loops, which are a simplification of for loops:

while (<test>) {
<body statements>

}

The loop will execute the body as long as the test is true, and it will exit when the test becomes false. We can translate
our for loop above to a while loop as follows:

size_t i = 0;
while (i < values.size()) {

sum += values[i];
(continues on next page)

3 Any of the initialization, test, or update may be omitted, but the semicolons separating them must still be present. If the test is omitted, it is
assumed to always be true.

16

Programming and Data Structures, Release 0.3

(continued from previous page)

++i;
}

Depending on the computation, it may be more naturally expressed using one loop construct or the other. In this case,
iterating over the elements of a vector arguably is more cleanly expressed with a for loop than a while loop.

In addition to the normal behavior of a loop, we further control execution through the loop with return, break, and
continue statements. A return statement immediately exits the enclosing function. A break statement exits the (most
inner) loop, proceeding past the loop:

// Print elements until the first 0
for (size_t i = 0; i < values.size(); ++i) {
if (values[i] == 0) {
break;

}
cout << values[i] << endl;

}

A continue statement skips the rest of the current loop iteration, but does not immediately exit the loop:

// Print the square root of non-negative numbers
for (size_t i = 0; i < v.size(); ++i) {
if (v[i] < 0)) {
continue;

}
cout << v[i] << endl;

}

Often, a loop can be restructured to avoid break or continue statements, but in other cases, a computation may be more
easily expressed using them. For the second loop above, we can rewrite it as follows:

// Print the square root of non-negative numbers
for (size_t i = 0; i < v.size(); ++i) {
if (v[i] >= 0)) {
cout << v[i] << endl;

}
}

For the first loop that uses a break statement, we can use logical operations instead:

// Print elements until the first 0
for (size_t i = 0; i < values.size() && values[i] != 0; ++i) {

cout << values[i] << endl;
}

We can use either && or and to specify a conjunction (an “and” of two conditions), either || or or for a disjunction (an
“or” of two conditions), and either ! or not to negate a truth value. Conjunction and disjunction are short-circuiting,
meaning that the right-hand side will only be evaluated if necessary to compute the result. In our example here,
values[i] != 0 only gets evaluated when i < values.size() – good thing, because otherwise we could access
an element past the end of the vector, producing the dreaded undefined behavior.

17

CHAPTER

FIVE

PROCEDURAL ABSTRACTION

Abstraction is the principle of separating what something is or does from how it does it. It is the primary tool for
managing complexity in Computer Science and other fields. As a non-programming example, consider the task of
making a sandwich. In order to make a sandwich, we don’t need to know how bread is made, nor peanut butter nor
jelly. All we need to know is how to put those ingredients together to construct a sandwich. Thus, we rely on the
abstractions of bread, peanut butter, and jelly to make a sandwich. Similarly, the person who eats our sandwich doesn’t
need to know how it’s made – all they need to know is that it is a delicious sandwich.

= how

what = how

what

what = how

what what

what what

High Level

Low Level
what what what

Figure 5.1: Abstraction layers for making a sandwich.

In a complex system, there are multiple layers of abstraction, each of which relies on the “what” knowledge of the lower
layers without needing to know the “how.” In the case of a sandwich, the top layer is the consumer of the sandwich, who
only needs to know that it is a sandwich. The layer below is the maker of the sandwich, who needs to know what bread,
peanut butter, and jelly are and how to combine them into a sandwich. They do not need to know how to make each
of the ingredients. The jelly manufacturer needs to know how to combine fruit and other ingredients into a container
and apply heat to make jelly. However, they do not need to know how to grow fruit. That’s a farmer’s job, who needs
to know how to use plants, water, and pollinators in order to produce fruit.

Computer programs are similarly built using layers of abstraction. When it comes to computational procedures, func-
tions are our mechanism for defining procedural abstractions. The user of a function need only know what the function
does without caring about how the function accomplishes its task. Specifically, the user needs to know the interface of
the function, including its actual code interface and the documentation of what the function does. The user does not

18

Programming and Data Structures, Release 0.3

need to concern themselves with the implementation of the function, the actual details of how the function works.

5.1 Code Organization in C++

In general, we organize a program by decomposing it into independent modules, defined in separate files. In C++, a
single module is further decomposed into a header file and a source file. In this course, we will use the .hpp extension
for header files and the .cpp extension for source files4. The header contains the interface of the module, while the
source file contains the actual implementation.

As an example, the following is a subset of stats.hpp from Project 1:

#include <vector>

//REQUIRES: v is not empty
//EFFECTS: returns the arithmetic mean of the numbers in v
double mean(std::vector<double> v);

Only a declaration of the mean() function appears in the header, along with its documentation. The actual definition
goes in stats.cpp, the source file for the module:

#include "stats.hpp"
#include "p1_library.hpp"

using namespace std;

double mean(vector<double> v) {
return sum(v) / count(v);

}

Other source files that use the functions in the stats module need only include the header file (stats.hpp) with the
#include directive:

#include <iostream>
#include "stats.hpp"

using namespace std;

int main() {
vector<double> data = { 1, 2, 3 };
cout << mean(data) << endl;

}

A source file that uses the stats module only needs to know about the interface of the module. As long as the interface
remains the same, the implementation of a module can change arbitrarily without affecting the behavior of a source file
that uses it.

The #include directive actually pulls in the code from the target into the current file. So the end result is as if the
declarations for the stats functions actually were written in this source file as well. We get access to those functions’
declarations without having to manually repeat them.

Library modules such as vector and iostream are surrounded by angle brackets (e.g. #include <vector>) in a
#include directive. Non-library headers that are located in the same directory are surrounded by double quotes (e.g.

4 The extensions .hxx and .h are other common conventions for header files, and .cxx and .cc are also common for source files.

5.1. Code Organization in C++ 19

https://eecs280staff.github.io/p1-stats/

Programming and Data Structures, Release 0.3

#include "stats.hpp"). For the purposes of this course, we never #include anything other than header files and
standard libraries – we never #include a .cpp source file.

The using namespace std; directive allows us to refer to standard-library entities without prefixing them with
std::. An alternative is to avoid the prefix for specific entities with individual using declarations:

#include <iostream>
#include "stats.hpp"

using std::cout; // allow cout to be used without std::
using std::endl; // allow endl to be used without std::

int main() {
// must prefix vector with std::
std::vector<double> data = { 1, 2, 3 };
// can elide std:: with cout and endl
cout << mean(data) << endl;

}

It is considered bad practice among C++ programmers to include a using namespace std; directive, or generally
other using declarations, in a header file – this forces those directives and declarations on anyone who #includes the
header. On the other hand, they are fine to place in a source file, since source files are generally not #included.

The overall file structure for Project 1 is shown in Figure 5.2, excluding testing modules.

p1_library.hpp stats.hpp

p1_library.cpp stats.cppmain.cpp

Figure 5.2: File structure for Project 1.

Arrows are shown between header files and the source files that #include them.

When compiling the project, only source files are passed to the compiler. The header files are folding into the source
files through the #include directives:

$ g++ --std=c++17 -pedantic -g -Wall -Werror p1_library.cpp stats.cpp main.cpp -o main.
→˓exe

Any number of source files can be passed to the compiler, but only one of those may contain a main() function.

5.1. Code Organization in C++ 20

Programming and Data Structures, Release 0.3

5.2 The Compilation Process

Consider the compilation command above. The elements of the command are:

• g++ is the C++ compiler we are invoking.

• The --std=c++17 argument tells it to compile according to the C++17 language standard.

• The -pedantic argument tells the compiler to adhere strictly to the C++ standard. Without this flag, compilers
often provide extensions or allow behavior that is not permitted by the standard.

• The -g argument tells the compiler to produce an executable that facilitates debugging.

• The -Wall argument asks the compiler to generate warnings about possible programming errors.

• The -Werror argument configures the compiler to treat warnings as errors, so that it does not compile code that
has warnings.

• The arguments -o main.exe tell the compiler to produce the output file main.exe.

• The remaining three arguments are the source files for our program – p1_library.cpp, stats.cpp, and main.
cpp.

For the source files, the compiler will compile each of them separately, producing temporary object files. It will then
attempt to link the object files together into the output executable. The linking step can fail if:

• A function is declared and used in the source files, but no definition is found. For example, if the definition for
percentile() is missing, a linker error such as the following results:

Undefined symbols for architecture x86_64:
"percentile(std::__1::vector<double, std::__1::allocator<double> >, double)",␣

→˓referenced from:
_main in main-dc223c.o

ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

• Multiple definitions of the same function are found. For example, if we try to compile and link multiple source
files that define a main() function, we get a linker error like the following:

duplicate symbol _main in:
/var/folders/gc/0lqwygqx381fmx9hhvj0373h0000gp/T/main-9eba7c.o
/var/folders/gc/0lqwygqx381fmx9hhvj0373h0000gp/T/stats_tests-b74225.o

ld: 1 duplicate symbol for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

Upon success, the result of the linking step is the final program executable, main.exe for the compilation command
above.

5.3 Specification Comments (RMEs)

The interface of a function includes its signature, which consists of the function’s name and parameter types. The
return type of the function5 is also part of its interface.

Another part of a function’s interface is documentation about what it does, as in the following:
5 Technically, the return type of a regular (i.e. non-template) function is not part of its signature as defined by the C++ standard (see

[defns.signature] in the standard). It is, however, part of the function’s interface.

5.2. The Compilation Process 21

Programming and Data Structures, Release 0.3

//REQUIRES: v is not empty
//EFFECTS: returns the arithmetic mean of the numbers in v
double mean(std::vector<double> v);

This documentation describes the what of the function, so it is an integral part of what a user of the function needs to
know.

The documentation format we use in this course is an RME, which consists of a REQUIRES clause, a MODIFIES
clause, and an EFFECTS clause.

5.3.1 REQUIRES Clause

The REQUIRES clause lists what the function requires in order to accomplish its task. If the requirements are not met,
then the function provides no guarantees – the behavior is undefined, and anything the function does (e.g. crashing
your computer, stealing your credit-card info, etc.) is valid. Thus, a user should never call a function with arguments
or in a state that violates the REQUIRES clause.

Within the function definition, the implementation is allowed to assume that the REQUIRES clause is met – again, a
user should never call the function if they are violated. A good practice is to assert that the REQUIRES clause is met,
if it is possible to do so:

#include <cassert>
#include "stats.hpp"
#include "p1_library.hpp"

using namespace std;

double mean(vector<double> v) {
assert(!v.empty());
return sum(v) / count(v);

}

In order to use assert, the <cassert> header must be included. Then a boolean expression can be passed to assert.
If the expression evaluates to a true value, execution proceeds normally. However, if it evaluates to a false value, then
the program crashes with a meaningful error message:

Assertion failed: (!v.empty()), function mean, file stats.cpp, line 8.

This is much more desirable than computing a wrong answer (or stealing your credit-card info!), as it tells the user they
did something wrong and where the requirements were violated.

If a function doesn’t have any requirements, the REQUIRES clause may be elided. Such a function is called complete,
while one that has requirements is called partial.

5.3. Specification Comments (RMEs) 22

Programming and Data Structures, Release 0.3

5.3.2 MODIFIES Clause

The MODIFIES clause specifies the entities outside the function that might be modified by it. This includes pass-by-
reference parameters, global variables (not in this course – only global constants are permitted), and input and output
streams (e.g. cout, cin, a file stream, etc.):

//MODIFIES: v
//EFFECTS: sorts v in ascending order
void sort(std::vector<double> &v);

The MODIFIES clause only specifies what entities may be modified, leaving out any details about what those modifi-
cations actually might be. The latter is the job of the EFFECTS clause. Instead, the purpose of the MODIFIES clause
is for the user to quickly tell what items might be modified.

If no non-local entities are modified, the MODIFIES clause may be elided.

5.3.3 EFFECTS Clause

The EFFECTS clause specifies what the function actually does. This includes details about what modifications are
made, if any, as well as what the return value means, if there is one. All functions should have an EFFECTS clause –
if a function does nothing, there is no point to writing the function.

The EFFECTS clause should generally only indicate what the function does without getting into implementation details
(the how). It is part of the interface of a function, so it should not be affected if the implementation were to change.

5.4 Properties of Procedural Abstraction

As mentioned previously, the implementation of an abstraction should be able to change without affecting the way the
abstraction is used. More formally, abstractions are substitutable – we should be able to swap out an implementation
of an abstraction for a different one. As long as the interface remains the same, code that uses the abstraction will still
work.

Abstractions should also be local, meaning that it should be possible to understand the implementation of one abstrac-
tion without knowing anything about the implementation of other abstractions. This implies that the implementation
of one abstraction should not rely on implementation details of another – instead, the former should only work with the
latter through the interface of the latter.

5.4. Properties of Procedural Abstraction 23

CHAPTER

SIX

TESTING

Testing is the primary mechanism we have for determining whether or not code is correct. Most programs are too
complex to formally prove correct with reasonable effort. Instead, thorough testing provides a measure of confidence
that the code behaves correctly.

Insufficient testing can lead to code that breaks when deployed, with potentially disastrous consequences. A canonical
example is the Therac-25, a radiation-therapy machine from the 1980s. A combination of poor design and software
bugs led to several cases where patients received massive radiation overdoses. Three patients died as a result. A more
recent example of software bugs leading to catastrophic failure is Knight Capital Group, a financial-services firm that
engaged in high-frequency trading. Lack of regression testing, poor software maintenance, and a mistake in deployment
caused a new version of their software to execute millions of trades that bought shares at high prices and sold them at
lower ones – all in a span of just 45 minutes. The end result was a pre-tax loss of $440 million, and the company was
forced to sell itself to a competitor.

In this course, the stakes aren’t quite as high as in the cases above. However, it is often the case that the difference
between doing poorly on a project and doing well is how well you test your code. Testing is the mechanism for deter-
mining whether or not code is buggy. Once a bug has been detected, debugging is the process used to identify and fix
the source of the bug.

There are two main categories of test cases:

• Unit tests test once piece of code at a time, often at the granularity of individual functions or small groups of
functions. This helps to find bugs early as well as make them easier to debug, since a failed unit test identifies
exactly which function is broken.

• System tests test an entire module or program as a whole. This can identify bugs that occur when integrating
multiple units together – it’s possible that two units appear to work individually, but one unit makes an incorrect
assumption about the other that only manifests when they are tested together. System tests can also be closer to
the real use case of a program, providing a measure of confidence that the program works as a whole.

In software development, it is important to maintain a set of regression tests, or tests that are run every time a code
change is made. That way, a breaking change is identified immediately and can be fixed before the software is deployed.
Regression tests generally include both unit and system tests.

Test-driven development is a common programming practice that integrates writing tests with developing the imple-
mentation of a program. Once the interface of a unit has been determined, tests can be written even before the imple-
mentation – that way, once the implementation is written, there are tests that can be run immediately. Furthermore, the
process of writing tests can help inform the right strategy to use in implementation, reducing development time. The
implementation in turn inspires new test cases, based on an understanding of what mistakes could have been made in
the code. The result is an iterative process: writing tests for a unit, implementing the unit, writing more tests, fixing
bugs, and so on until the code has been thoroughly vetted.

Only valid test cases should be written. Those that don’t compile are useless, as well as those that result in undefined
behavior (e.g. by violating the REQUIRES clause of a function). There are several types of valid test cases:

24

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Knight_Capital_Group

Programming and Data Structures, Release 0.3

• Simple test cases are for the “average” case. For instance, in testing a mode() function in Project 1, an example
of a simple test case is one that tests a vector that contains exactly one mode (e.g. { 1, 2, 3, 2 }).

• Edge cases are those that test special cases in a unit’s behavior. For instance, the mode() function requires
that its argument vector be non-empty. Thus, the smallest vector that can be passed to mode() is one with a
single element – this is an edge case. Another special case is when the input has two modes – in this case, the
documentation of the function specifies that it returns the smaller one. So we should test that the function indeed
behaves correctly in this case.

• Stress tests are intensive tests that ensure that a system will work under a heavy load. For example, an autograder
for a 1000-person course should be able to withstand hundreds of students trying to submit right before the
deadline. Thus, it is important to test the autograder with large numbers of concurrent requests. Stress tests will
not be used in this course, since the projects we will focus on are not performance-critical.

Test cases should focus on cases that realistically could be erroneous. For example, a malicious programmer could
insert a bug that only occurs for a specific, arbitrary input (e.g. if the number 42 is in the input). However, we generally
can’t test every possible input, so we have to concentrate on those cases where a reasonable programmer could make a
mistake. (Other mechanisms, such as code reviews, are used to guard against malicious programmers.)

The small scope hypothesis states that thorough testing with “small” test cases is sufficient to catch most bugs in a
system6. Thus, our test cases need not be large – in general, they should be small enough where we can compute
the expected results by hand. Similarly, having more test cases is not necessarily better. Fewer test cases that are
meaningfully different is more effective than having many, redundant test cases. As an example, the data sets { 1,
1, 2, 2, 2 } and { 1, 1, 2, 2, 2, 2 } are not meaningfully different for the mode() function – there is no
good reason why it would behave differently in the two cases. On the other hand, the data set { 1, 1, 2, 2 } is
meaningfully different, since it contains two modes.

6 See Evaluating the “Small Scope Hypothesis” by Andoni et al. and On the Small-Scope Hypothesis for Testing Answer-Set Programs by Oetsch
et al. for empirical evaluations of the hypothesis.

25

CHAPTER

SEVEN

MACHINE MODEL I

A computer program consists of source code that determines what the program does. The program itself is run on
a machine, and the program directs the machine on what computation should be preferred. In order to understand a
program, it is important to have a machine model that helps us reason about how the source code relates to what happens
at runtime.

As an example, consider the following C++ program:

int main() {
int x = 3;
double y = 4.1;
int z = x;
x = 5;

}

When the program runs, execution starts at main(). Each variable in the program is a name that refers to some
object in memory, a region of memory that holds the data value for the variable. The variable’s type determines how
much memory is required, and how the data are represented – generally, data are stored in bytes, which themselves are
sequences of eight bits, each of which is a binary digit that is zero or one. For instance, in typical C++ implementations,
a variable of type int requires four bytes (32 bits) of storage, while one of type double requires eight bytes (64 bits).

It is often useful to think of memory as a large array, with data values stored at different indices into the array, as shown
in Figure 7.2.

Here, the program is using memory index 6 for x, index 2 for y, and index 4 for z. (Later, we will see that a program
uses a more systematic method for locating the local variables of a function.) The contents of memory illustrated above
are after the initialization of x and y but before the initialization of z. The location for x has a representation of the int
value 3, the location for y has a representation of the double value 4.1, and the location for z has some indeterminate
value.

When the program proceeds to initialize z, it copies the value 3 from the memory for x into the memory for z, as
demonstrated in Figure 7.3.

Finally, the assignment x = 5 modifies the value of x to be 5, as Figure 7.4 illustrates.

In order to discuss the conceptual spaces for source code and runtime in more detail, we need some terminology. In
source code, a name refers to some entity such as a variable, function, or type. As mentioned above, a variable is a
name that refers to an object in memory. A name has a scope, which determines what region of code can use that
name to refer to an entity. For example, the scope of y in the code above begins at the declaration of y and ends at the
end of the function definition for main(). Attempting to use y outside this region will result in a compiler error. A
declaration is what introduces a name into the program and begins its scope.

At runtime, an object is a piece of data in memory, and it is located at some address in memory (corresponding to the
index in our basic machine model above). An object has a lifetime during which it is legal to use that object. More
specifically, an object is created at some point in time, and at some later point in time it is destroyed. The storage
duration of an object determines its lifetime. There are three options that we will see in C++:

26

Programming and Data Structures, Release 0.3

x

y

z

…
00000000
00000000
00000000
00000101
01000000
00010000
01100110
01100110
01100110
01100110
01100110
01100110
00000000
00000000
00000000
00000011

…

Memory

Figure 7.1: Variables correspond to objects in memory, each of which stores a data value represented in binary.

7

6 3 x

5

4 z

3

2 4.1 y

1

0

Figure 7.2: Simplified machine model, with memory as a linear (array) structure with slots for different objects.

27

Programming and Data Structures, Release 0.3

7

6 3 x

5

4 3 z

3

2 4.1 y

1

0

Figure 7.3: Initializing an object as a copy of another.

×
7

6 3 5 x

5

4 3 z

3

2 4.1 y

1

0

Figure 7.4: Modifying the value of an object.

28

Programming and Data Structures, Release 0.3

• static: the lifetime is essentially the whole program

• automatic (also called local): the lifetime is tied to a particular scope, such as a block of code

• dynamic: the object is explicitly created and destroyed by the programmer

The former two durations are controlled by the compiler, while the latter is specified by the programmer. We will
restrict ourselves to static and automatic storage duration until later in the course.

A variable is not the same thing as a memory object: a variable is a concept associated with source code, while an
object is associated with the runtime. The same variable can refer to different objects at different times, such as a local
variable in a function that is called more than once. An object that has dynamic storage duration is not associated with
a variable at all.

An important consideration in the design of a language is the semantics of an initialization or assignment of the form
x = y. Does this change which object x is referring to, or does it modify the value of the object that x is referring to?
The first option is known as reference semantics, while the second is value semantics.

In C++, the default is value semantics. Consider the following program:

int x = 42; // initialize value of x to 42
int y = 99; // initialize value of y to 99
x = y; // assign value of y to value of x

The assignment in the last line copies the value stored in the memory object associated with y into the memory object
for x, as shown in Figure 7.5.

42 x

99 y

42 x

99 y

×99

x = y

Figure 7.5: Assignment copies a value from the right-hand side into the left-hand-side object.

C++ supports reference semantics only when initializing a new variable. Placing an ampersand (&) to the left of the
new variable name causes the name to be associated with an existing object. The following is an example with a local
variable:

int x = 42; // initialize value of x to 42
int z = 3; // initialize value of z to 3
int &y = x; // y and x are now names for the same object
x = 24; // assigns 24 to object named x/y
y = z; // Does NOT re-bind y to a different object

// Value semantics used here.

The declaration int &y = x; introduces y as a new name for the object associated with x. Any subsequent modifi-
cation to this object is reflected through both names, regardless of the name used to perform the modification. Figure
7.6 shows the effects of the assignments in the code above.

Since C++ only supports reference semantics in initialization, the association between a variable and a memory
object can never be broken, except when the variable goes out of scope.

29

Programming and Data Structures, Release 0.3

42 x,y

3 z 3 z

×
x = 24

42 x,y24

3 z

×
y = z

24 x,y3

Figure 7.6: A reference is another name for an existing object.

7.1 Pointers

Recall that in C++, an object is a piece of data in memory, and that it is located at some address in memory. The
compiler and runtime determine the location of an object when it is created; aside from deciding whether an object is
in the global segment, on the stack, or in the heap segment (the segment used for dynamic memory), the programmer
generally does not control the exact location where an object is placed1. Given the same program and the same inputs
to that program, different systems will often end up placing the same objects at different memory locations. In fact, in
many implementations, running the same program twice on the same system will result in different addresses for the
objects.

Though the programmer does not have control over the address at which an object is located, the programmer does have
the ability to query the address on an object once it has been created. In C++, the & (usually pronounced “address-of”)
operator can be applied to an object to determine its address:

int main() {
int x = 3;
double y = 5.5;
cout << &x << endl; // sample output: 0x7ffee0659a2c
cout << &y << endl; // sample output: 0x7ffee0659a20

}

Addresses are usually written in hexadecimal (base-16) notation, with a leading 0x followed by digits in the range
0-9 and a-f, with a representing the value 10, b the value 11, and so on. Most modern machines use 64 bits for an
address; since each digit in a hexadecimal number represents four bits (24 = 16 values), a 64-bit address requires up
to 16 hexadecimal digits. The examples above use only 12 digits, implying that the leading four digits are zeros. Most
examples in this text use fewer digits for conciseness.

In addition to being printed, addresses can also be stored in a category of objects called pointers2. A pointer variable
can be declared by placing a * symbol to the left of the variable name in its declaration:

int x = 3;
int *ptr = &x;
cout << ptr << endlt; // sample output: 0x7ffee0659a2c

A pointer type consists of two elements:

• the type of the objects whose addresses the pointer can hold as a value. For example, an int * pointer can hold
the address of an int, but not that of any other data type.

• the * symbol, which indicates that the type is a pointer

Each data type in C++ has a corresponding pointer type. For instance, int * is the pointer type corresponding to int,
1 C++ has placement new, which allows a programmer to initialize a new object in a given memory location. However, even with placement

new, the original memory must have been allocated by the programmer, and the programmer does not control the exact address produced by that
allocation.

2 The terms address and pointer are often used interchangeably. Technically, a pointer is an object that holds an address as its value, while the
address is the value itself.

7.1. Pointers 30

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Placement_syntax

Programming and Data Structures, Release 0.3

double * is the pointer type corresponding to double, and double ** is the pointer type corresponding to double
*.

A pointer object can be dereferenced to obtain the object whose address the pointer is holding by applying the * (usually
pronounced “star” or “dereference”) operator:

int x = 3;
int y = 4;
int *ptr = &x;
cout << *ptr << endl; // prints 3
ptr = &y;
cout << *ptr << endl; // prints 4

We often say that a pointer “points to” an object, and that the * operator “follows” the pointer to the object it is pointing
at. In keeping with this terminology, a pointer is often pictured as an arrow from the pointer to the object it is pointing
at, as shown in Figure 7.7.

0x7ffee0659a20 0x7ffee0659a2c ptr

0x7ffee0659a28 4 y

0x7ffee0659a2c 3 x

Figure 7.7: An arrow indicates the object whose address a pointer holds.

Usually, we are not concerned with actual address values – they are implementation-dependent and can vary between
program runs. Instead, we only concern ourselves with which object each pointer is referring to. Thus, we often draw
just an arrow to illustrate which object a pointer is pointing to, as in Figure 7.8, without the actual address value.

ptr

4 y

3 x

Figure 7.8: Pointers are often illustrated by just an arrow, without the actual address value.

The following is another example of working with a pointer:

int main() {
int foo = 1;
int *bar = &foo;
foo += 1;
*bar += 1;

cout << foo << endl; // prints 3
(continues on next page)

7.1. Pointers 31

Programming and Data Structures, Release 0.3

(continued from previous page)

cout << bar << endl; // prints address of foo (e.g. 0x1000)
cout << *bar << endl; // prints 3

}

Stack

main

0x1000 1 foo

0x1004 0x1000 bar

foo += 1

Stack

*bar += 1

Stack

main

0x1000 2 foo

0x1004 0x1000 bar

main

0x1000 3 foo

0x1004 0x1000 bar

Figure 7.9: Example of modifying an object through a pointer.

The code initializes the pointer bar with the address of foo. It proceeds to increment foo directly, then dereferences
bar to increment the object it is pointing at. Since it is pointing at the object associated with foo, the result is that foo
has value 3. The state of memory at each point is shown in Figure 7.9.

7.1.1 Pointers and References

The * and & symbols mean different things when they are used as part of a type and when they are used in an expression:

• When used in a type, * means that the type is a pointer type, while & means the type is a reference type.

• When used as a unary prefix operator in an expression, * is used to dereference a pointer, while & is used to
obtain the address of an object.

• When used as a binary infix operator, * is multiplication, while & is a bitwise and operation (which is outside the
scope of this course).

The following illustrates some examples:

int x = 3;
int *ptr = &x;
int &ref = *ptr;

In the second line, * is used in a type, so ptr is a pointer to an int. The initialization is an expression, so the & obtains
the address of the object corresponding to x. In the third line, & is used as part of the type, so ref is a reference variable.
Its initialization is an expression, so the * dereferences ptr to get to the object associated with x. The result is that ref
is an alias for the same object as x.

Pointers allow us to work indirectly with objects. The following is an implementation of a swap function that uses
pointers to refer to the objects whose values to swap:

void swap_pointed(int *x, int *y) {
int tmp = *x;
*x = *y;
*y = tmp;

}

int main() {
int a = 3;
int b = 5;

(continues on next page)

7.1. Pointers 32

Programming and Data Structures, Release 0.3

(continued from previous page)

swap_pointed(&a, &b);
cout << a << endl; // prints 5
cout << b << endl; // prints 3

}

Figure 7.10 demonstrates the execution of this code.

Stack

main

0x1000 3 a

0x1004 5 b

swap_pointed

0x1010 0x1004 y

0x1018 3 tmp

0x1008 0x1000 x

*x = *y

Stack

*y = tmp

Stack

main

0x1000 3 a

0x1004 5 b

swap_pointed

0x1010 0x1004 y

0x1018 3 tmp

0x1008 0x1000 x

5
main

0x1000 5 a

0x1004 5 b

swap_pointed

0x1010 0x1004 y

0x1018 3 tmp

0x1008 0x1000 x

3

Figure 7.10: Pointers enable redirection, allowing a function to modify objects in a different scope.

References can also be used to indirectly refer to other objects. However, a pointer actually holds the address of another
object, while a reference just acts as another name for an existing object. A reference must be initialized to refer to
another object, and the association between the reference and its object cannot be broken. On the other hand, a pointer
need not be initialized to point to an object, and the address value it holds can be later changed to be the address of
a different object. A pointer can be null or have an undefined value, so it must be used carefully to avoid undefined
behavior. On the other hand, while it is possible to construct an invalid reference, it usually does not occur in the normal
course of programming in C++.

Both pointers and references allow objects to be used across scopes. They both enable subtype polymorphism, a concept
we will see later in the course. Both can also be used to refer to objects in dynamic memory, as we will also see later.

Pointers are strongly connected to arrays. Indexing into an array actually works through pointer arithmetic, as we will
see later.

7.1. Pointers 33

CHAPTER

EIGHT

MACHINE MODEL II

8.1 Pointer Errors

A pointer is an atomic type, since it cannot be subdivided into smaller objects. As with other atomic types, a variable
of pointer type that isn’t explicitly initialized is default initialized to an undefined value:

int x = 3;
int *ptr; // undefined value
ptr = &x; // well-defined value -- the address of x

Dereferencing a default-initialized pointer results in undefined behavior – the program may crash, or it may not; reading
the dereferenced value can result in zero, or some other random value. Undefined behavior is notoriously difficult to
debug, as the behavior can be different on different machines or in different runs of the program on the same machine.
Tools like Valgrind or an address sanitizer can help detect undefined behavior.

The following is another example of default initializing pointers:

int main() {
int *x;
int *y;
int a = -1;
x = &a;
cout << *x << endl; // prints -1
*x = 42;
cout << a << endl; // prints 42
*y = 13; // UNDEFINED BEHAVIOR

}

Stack

main

0x1008 ? y

0x1010 -1 a

x = &a

0x1000 ? x

Stack

main

0x1008 ? y

0x1010 -1 a

0x1000 0x1010 x
*x = 42 *y = 13 ?

Stack

main

0x1008 ? y

0x1010 42 a

0x1000 0x1010 x

Figure 8.1: Dereferencing an uninitialized pointer results in undefined behavior.

Figure 8.1 illustrates the execution of this code. Both x and y are default initialized to indeterminate values. The code

34

https://eecs280staff.github.io/p1-stats/setup_valgrind.html
https://eecs280staff.github.io/p1-stats/setup_asan.html

Programming and Data Structures, Release 0.3

proceeds to assign the address of a into x, so x now has a well-defined value, and it is valid to dereference x. Assigning
to the object it is pointing at changes the value of that object, the one named by a. Dereferencing y, on the other hand,
produces undefined behavior, since its value is a junk address. The program may crash, or it may not. It may overwrite
a memory location that is in use by something else, or some location that is not in use. With undefined behavior,
anything is possible.

A null pointer is a pointer that holds an address value of 0x0. No object can be located at that address, making the null
value a useful value for a pointer that does not point to a valid object. In C++, the nullptr literal represents the null
value, and it can be used with any pointer type:

int *ptr1 = nullptr;
double *ptr2 = nullptr;
cout << (ptr1 == nullptr) << endl; // prints 1 (i.e. true)

Dereferencing a null pointer also results in undefined behavior. However, in most implementations, doing so will crash
the program, which is generally easier to debug than other forms of undefined behavior.

A null pointer is sometimes used to indicate the lack of a value, as in the following:

// EFFECTS: Returns a pointer to the first string in vec of the given
// length, or a null pointer if no such string is in vec.
string * find_by_length(vector<string> &vec, int length) {
for (size_t i = 0; i < vec.size(); ++i) {
if (vec[i].size() == length) {
return &vec[i];

}
}
return nullptr; // no string of given length

}

int main() {
vector<string> v = { "hello", "world", "from",

"EECS", "280" };
string *found = find_by_length(v, 3);
if (found) { // null pointer has false value
cout << "found string: " << *found << endl;

} else {
cout << "no such string" << endl;

}
}

In this example, the find_by_length() function returns a pointer to a string of the given length. However, if no such
string exists, the function returns a null pointer to indicate this. The caller must check whether the return value is null
before attempting to dereference it.

Since a pointer is an object in its own right, it can live past the lifetime of the object it is pointing at. The following is
an example:

int * get_address(int x) {
return &x;

}

void print(int val) {
cout << val << endl;

}
(continues on next page)

8.1. Pointer Errors 35

Programming and Data Structures, Release 0.3

(continued from previous page)

int main() {
int a = 3;
int *ptr = get_address(a);
print(42);
cout << *ptr << endl; // UNDEFINED BEHAVIOR

}

Stack

main

0x1000 3 a

0x1004 ? ptr

get_address

0x100c 3 x

return &x

Stack

main

0x1000 3 a

0x1004 0x100c ptr

get_address

0x100c 3 x

print(42)

Stack

print

0x100c 42 val

main

0x1000 3 a

0x1004 0x100c ptr

Figure 8.2: A pointer may refer to a dead object, in which case dereferencing it produces undefined behavior.

In this code, the parameter of the get_address() function is passed by value. So the x parameter is a new object in
the activation record for get_address(), and it is initialized as a copy of a. The function returns the address of x, and
that value is placed in the ptr object in main(). However, x dies along with the activation record of get_address(),
so ptr is now pointing at a dead object. The code then calls print(), and it so happens that its activation record is
placed in the same location previously used by get_address(), as shown in Figure 8.2. At this point, ptr happens to
point at the val object, whose value is 42. When the print() function returns, its activation record is also reclaimed.
Proceeding to dereference ptr produces undefined behavior. It so happens in this implementation that 42 is printed,
but other implementations may have different behavior.

We can fix the code above by passing the parameter to get_address() by reference:

int * get_address(int &x) {
return &x;

}

void print(int val) {
cout << val << endl;

}

int main() {
int a = 3;
int *ptr = get_address(a);
print(42);
cout << *ptr << endl; // prints 3

}

Now x aliases the object a in main(), as shown in Figure 8.3. Thus, get_address() returns the address of a, which
is still alive when *ptr is printed.

8.1. Pointer Errors 36

Programming and Data Structures, Release 0.3

Stack

main

0x1000 3 a

0x1004 ? ptr

get_address

x

Stack

main

0x1000 3 a

0x1004 0x1000 ptr

get_address

x

return &x

Figure 8.3: Example of taking the address of a reference parameter.

8.2 Function Calls and the Call Stack

Previously, we saw a basic machine model in which the program places each object at a different location in mem-
ory. We now examine a more structured model, stack-based memory management, that is used by many language
implementations.

In most implementations, the data for a function call are collectively stored within an activation record, which contains
space for each of the function’s parameters and local variables, temporary objects, the return address, and other items
that are needed by the function. In this course, we will generally only consider the parameters and local variables in an
activation record, ignoring the other pieces of data there.

In stack-based memory management, activation records are stored in a data structure called a stack. A stack works just
like a stack of pancakes: when a new pancake is made, it is placed on top of the stack, and when a pancake is removed
from the stack, it is the top pancake that is taken off. Thus, the last pancake to be made is the first to be eaten, resulting
in last-in, first-out (LIFO) behavior. Activation records are similarly stored: when an activation record is created, it is
placed on top of the stack, and the first activation record to be destroyed is the last one that was created. This gives rise
to an equivalent term stack frame for an activation record.

As an example, consider the following program:

void bar() {
}

void foo() {
bar();

}

int main() {
foo();

}

When the program is run, the main() function is called, so an activation record is created and added to the top of the
stack. Then main() calls foo(), which places an activation record for foo() on the top of the stack. Then bar() is
called, so its activation record is put on the stack. When bar() returns, its activation record is removed from the stack.
Then foo() completes, removing its activation record. Finally, the activation record for main() is destroyed when the
function returns. Figure 8.4 shows the state of the stack after each call and return.

In many implementations, the stack is actually stored upside down in memory, so that it grows downward rather than
upward as shown in Figure 8.5. However, it still has the same LIFO behavior as a right-side-up stack.

As a more complex example, consider the following program:

8.2. Function Calls and the Call Stack 37

Programming and Data Structures, Release 0.3

Stack

foo

main

Stack

bar

foo

main

Stack

foo

main

Stack

main

Stack

main

Stack Stack

main()

foo()

bar()

return

return

return

Figure 8.4: A stack that stores activation records.

Stack

main

foo

bar

main()

foo()

bar()

return

return

return

Stack

main

foo

Stack

main

foo

Stack

main

StackStack

main

Stack

Figure 8.5: A stack that grows downward rather than upward.

int plus_one(int x) {
return x + 1;

}

int plus_two(int x) {
return plus_one(x + 1);

}

int main() {
int result = 0;
result = plus_one(0);
result = plus_two(result);
cout << result; // prints 3

}

At program startup, the main() function is called, creating an activation record that holds the single local variable
result. The declaration of result initializes its value to 0, and the program proceeds to call plus_one(0). This
creates an activation record for plus_one() that holds the parameter x. The program initializes the value of x to the
argument value 0 and runs the body of plus_one(). The body computes the value of x + 1 by obtaining the value
of x and adding 1 to it, resulting in a value of 1, which the function then returns. The return value replaces the original
call to plus_one(0), and the activation record for plus_one is discarded before main() proceeds. The code then
assigns the return value of 1 to result. Figure 8.6 illustrates the activation records up to this point.

The program then proceeds to call plus_two(result). First, result is evaluated to obtain the value 1. Then an
activation record is created for plus_two(), with space for its parameter x. Observe that this activation record is
located in memory where the previous activation record for plus_one() was – the latter is no longer in use, so the
memory can be reused. After the new activation record is created, the parameter x is initialized with the argument
value 1. Then the program runs the body of plus_two().

The body of plus_two() in turn calls plus_one(x + 1). This evaluates x + 1 to obtain the value 2, creates an
activation record for plus_one(), initializes the value of x in the new activation record to be 2, and then runs the body
of plus_one(). The state of memory at this point is shown in Figure 8.7.

8.2. Function Calls and the Call Stack 38

Programming and Data Structures, Release 0.3

Stack

main
0x1000 0 result

Stack

main
0x1000 0 result

plus_one
0x1004 0 x

Stack

main
0x1000 1 result

plus_one() return

Figure 8.6: Activation record for plus_one().

Stack

main
0x1000 1 result

Stack

main
0x1000 1 result

plus_two
0x1004 1 x

Stack

main
0x1000 1 result

plus_two() plus_one()
plus_two
0x1004 1 x

plus_one
0x1008 2 x

Figure 8.7: State of stack in second call to plus_one().

Observe that the new activation record for plus_one() is distinct from the previous one – each invocation of a func-
tion gets its own activation record. In addition, there are now two variables x in the program. Within the scope
of plus_one(), x refers to the object located in the activation record for plus_one(), and its value is 2. Within
plus_two(), x refers to the object in the activation record for plus_two(), and its value is 1.

The invocation of plus_one() computes 3 as its return value, so that value replaces the call to plus_one(), and the
activation record for plus_one() is discarded. plus_two() returns that same value 3, so the value 3 replaces the call
to plus_two() in main(), and the activation record for plus_two() is discarded. Then main() proceeds to assign
the value 3 to result and print it out. Finally, when main() returns, its activation record too is discarded.

8.2.1 Function-Call Process

To summarize, the following steps occur in a function call:

1. For pass-by-value parameters, the argument expressions are evaluated to obtain their values.

For a pass-by-reference parameter, the corresponding argument expression is evaluated to obtain an object1 rather
than its value.

The order in which arguments are evaluated is unspecified in C++.

2. A new and unique activation record is created for the call, with space for the function’s parameters, local variables,
and metadata. The activation record is pushed onto the stack.

3. The parameters are passed, using the corresponding arguments to initialize the parameters. For a pass-by-value
parameter, the corresponding argument value is copied into the parameter. For a pass-by-reference parameter,

1 C++ allows references to const to bind to values (i.e. rvalues in programming-language terms) rather than objects (lvalues). So a reference of
type const int & can bind to just the value 3, as in const int &ref = 3;.

8.2. Function Calls and the Call Stack 39

Programming and Data Structures, Release 0.3

the parameter is initialized as an alias of the argument object.

4. The body of the called function is run. This transfer of control is often called active flow, since the code actively
tells the computer which function to run.

5. When the called function returns, if the function returns a value, that value replaces the function call in the caller.

6. The activation record for the called function is destroyed. In simple cases, implementations will generally just
leave in memory what is already there, simply marking the memory as no longer in use.

7. Execution proceeds from the point of the function call in the caller. This transfer of control is often called passive
flow, since the code does not explicitly tell the computer which function to run.

The following program is an example of pass by reference:

void swap(int &x, int &y) {
int tmp = x;
x = y;
y = tmp;

}

int main() {
int a = 3;
int b = 7;
cout << a << ", " << b << endl; // prints 3, 7
swap(a, b);
cout << a << ", " << b << endl; // prints 7, 3

}

The program starts by creating an activation record for main(), with space for the local variables a and b. It initializes
a to 3 and b to 7 and then prints out their values. The program then calls swap(a, b), which evaluates the expressions
a and b to obtain their objects, creates an activation record for swap(), and initializes the parameters from the argument
objects. Since the two parameters are references, the activation record does not contain user-accessible memory for the
parameters. (The metadata for the function, however, may include information about the parameters.) The activation
record does contain explicit space for the local variable tmp, since it is not a reference. Figure 8.8 illustrates the
activation record.

Stack

main

0x1004 7 b

0x1000 3 a

swap

y

x

0x1018 tmp

Stack

main

0x1004 7 b

0x1000 3 a

swap

y

x

0x1018 3 tmp

Stack

main

0x1004 7 b

0x1000 7 a

swap

y

x

0x1018 3 tmp

Stack

main

0x1004 3 b

0x1000 7 a

swap

y

x

0x1018 3 tmp

tmp = x x = y y = tmp

Figure 8.8: Activation record for a function that uses pass by reference.

Here, the reference parameters are depicted with a dotted line between the names and the objects they reference.

The program proceeds to run the body of swap(). First, tmp is initialized to the value of x – since x refers to the same
object as a in main(), the value 3 of that object is copied into the memory for tmp. Then the assignment x = y copies

8.2. Function Calls and the Call Stack 40

Programming and Data Structures, Release 0.3

the value 7 from the object associated with y (b in main()) to the object associated with x (a in main()). Finally,
the assignment y = tmp copies the value 3 from tmp into the object associated with y (b in main()). When swap()
returns, its activation record is destroyed, and execution continues in main(). The latter prints out the new values of 7
and 3 for a and b, respectively.

A function can also return an object by reference, though we need to ensure that the lifetime of the object extends
beyond the function invocation. The following is an example:

int & larger(int &x, int &y) {
if (y > x) {
return y;

}
return x;

}

int main() {
int a = 3;
int b = 7;
cout << a << ", " << b << endl; // prints 3, 7
larger(a, b) = -1;
cout << a << ", " << b << endl; // prints 3, -1

}

The call larger(a, b) returns the object a or b whose value is larger, and we then assign the new value -1 to this
object. If larger() were to return by value instead, attempting to assign to the resulting value would result in a
compiler error.

Returning by reference is most common in data structures, where we wish to access an element by reference. For
instance, this is how the indexing (or subscript) operator works on a vector:

std::vector<int> data = /* ... */;
data[0] = -1;

This operator is implemented using operator overloading, which we will discuss later.

8.2. Function Calls and the Call Stack 41

Part II

Data Abstraction

42

CHAPTER

NINE

THE CONST KEYWORD

The const keyword is a type qualifier in C++ that allows us to prevent an object from being modified. As an example,
consider the following erroneous definition of strcpy():

void strcpy(char *dst, const char *src) {
while (*src != '\0') {
*src = *dst;
++src;
++dst;

}
*src = *dst;

}

In this definition, the assignments are backwards – the code is attempting to modify the source string rather than the
destination. However, because the src parameter was declared with type const char *, the compiler will detect this
error:

$ g++ --std=c++17 strcpy.cpp
strcpy.cpp:3:10: error: read-only variable is not assignable

*src = *dst;
~~~~ ^

strcpy.cpp:7:8: error: read-only variable is not assignable
*src = *dst;
~~~~ ^

2 errors generated.

A variable declared as const can be initialized, but its value cannot be later modified through an assignment. For a
simple type, the const keyword may appear on either side of the type:

const int x = 3; // initialization is OK
int const y = 4; // const can go on the right as well
x = y; // ERROR: attempt to assign to const object

Only types with values may be declared as const. The following types do not have values:

• References; they alias objects that may have values but do not have values of their own.

• Arrays; we will see arrays later in the course.

• Functions; we will see function types later in the course.

43

Programming and Data Structures, Release 0.3

9.1 References and const

We saw previously that the binding between a reference and the object it aliases is established at initialization, and it
cannot be broken as long as the reference exists. Thus, it is not meaningful for a reference itself to be const.

While a reference does not have a value and thus cannot be declared as const itself, it can refer to an object with const
type. The const keyword can appear to the left of the & in a reference type, as in const int & – this is read “inside
out” as “reference to a constant int”. The object the reference is aliasing is not modifiable through the reference:

int x = 3;
const int &ref1 = x; // reference to const int
int const &ref2 = x; // const can go on the right of int as well
ref1 = 4; // ERROR -- attempt to assign to const object

However, the original object is still modifiable if there is a non-const way to refer to it:

int x = 3;
int &ref1 = x;
const int &ref2 = x;
x = 4; // OK -- x not declared as const
ref1 = 5; // OK -- ref1 a reference to a non-const int
ref2 = -6; // ERROR -- ref2 a reference to a const int

The example above has three names that refer to the same object. However, the object is only modifiable through the
names that do not include the const keyword.

In the two previous examples, we have created reference-to-const aliases for a non-const object. We will see shortly
that non-const to const conversions are allowed, but the other direction is prohibited.

9.2 Pointers and const

Pointers do have a value, so they can be declared as const. To do so, the const keyword is placed to the right of the
*:

int x = 3;
int y = 4;
int * const ptr = &x;
*ptr = -1; // OK -- ptr is pointing to a non-const int
ptr = &y; // ERROR -- attempt to assign to const object

Reading the declaration of ptr inside out, we get “ptr is a constant pointer to an int.” Thus, we cannot modify the
value of ptr itself. However, since the type that ptr is pointing to (what is to the left of the *) is not const, we can
modify the object that ptr is pointing to.

Similar to a reference, we can declare that the object that a pointer is pointing to is const by placing the const keyword
to the left of the *:

int x = 3;
int y = 4;
const int * ptr = &x; // equivalent: int const *ptr = &x;
ptr = &y ; // OK -- ptr is not const, so we can change its value
*ptr = -1; // ERROR -- attempt to assign to const object

Finally, we can declare that both the pointer itself and the object it is pointing to are const:

9.1. References and const 44

Programming and Data Structures, Release 0.3

int x = 3;
int y = 4;
const int * const ptr = &x;
ptr = &y ; // ERROR -- attempt to assign to const object
*ptr = -1; // ERROR -- attempt to assign to const object

9.3 const Conversions

We’ve seen examples above where we’ve constructed references-to-const and pointers-to-const objects from objects
that were not declared as const. The general rule for converting between const and non-const is that the conversion
must not enable modifications that are prohibited without the conversion.

A const object can appear on the right-hand side of an assignment, since an assignment has value semantics – it copies
the value from the right-hand side to the left-hand side object. Thus, it does not permit the const object to be modified:

const int x = 3;
int y = x; // OK -- copies value from x; does not enable x to be modified

On the other hand, if we initialize a reference-to-non-const with a const object, we would enable the object to be
modified through the reference. Thus, such a conversion is prohibited:

const int x = 3;
int &ref = x; // ERROR -- enables const object to be modified through ref
ref = 4; // would modify the x object if the above were allowed

The same goes for placing the address of a const object in a pointer-to-non-const:

const int x = 3;
int *ptr = &x; // ERROR -- enables const object to be modified through ptr
*ptr = 4; // would modify the x object if the above were allowed

The other direction is allowed, however: creating a reference-to-const or pointer-to-const from a non-const object does
not enable any new modifications:

int x = 3;
int const &ref = x; // OK -- does not permit const object to be modified
const int *ptr = &x; // OK -- does not permit const object to be modified

The compiler only reasons about each conversion in isolation. This means that it does not allow a conversion from
const to non-const even if we have some other means of modifying the underlying object:

int x = 3;
int *ptr1 = &x; // OK -- does not permit const object to be modified
const int *ptr2 = ptr1; // OK -- does not permit const object to be modified
ptr1 = ptr2; // ERROR -- compiler sees that ptr2 is pointing to a

// a const object, but ptr1 is not a pointer
// to const

In the example above, even though ptr2 was originally initialized from ptr1, we cannot later assign the value of ptr2
to ptr1, since it would be converting a pointer-to-const to a pointer-to-non-const. This is actually useful for us as
programmers: if we pass a pointer to another function, and the function guarantees that it won’t modify the pointed-to

9.3. const Conversions 45

Programming and Data Structures, Release 0.3

object by declaring its parameter as pointer-to-const, then we would be unhappy if the function could convert it back
to a pointer-to-non-const and modify the pointed-to object.1

1 C++ has a const_cast that enables const to be removed or added. However, it is only used in exceptional cases, none of which are relevant
to this course.

9.3. const Conversions 46

CHAPTER

TEN

STRUCTS

C++ has several different categories of objects:

• Atomic types are built into the language, and these types are atomic because their objects cannot be subdivided
into smaller objects. Atomic types are also known as primitive types. Examples of atomic types include basic
numeric types such as int, double, bool, and char, as well as pointer types (e.g. int *, string *).

• Arrays are contiguous sequences of objects of the same type. They are therefore composed of homogeneous
subobjects. We will discuss arrays later in the course.

• Class-type objects are objects composed of member subobjects, each which may be of a different type. Class-type
objects are thus heterogeneous, and they are also often called compound objects.

In C++, a class type is introduced through the struct or class keyword. We will use the two keywords for different
conventions when introducing our own data types. Later, we will see that the actual distinction between how C++
treats the two keywords is minimal.

In order to introduce a new data type, we use the struct keyword, followed by the name of the type we are introducing,
followed by a body with member declarations:

struct Person {
string name;
int age;
bool is_ninja;

};

Here, we are introducing a Person type. The body contains declarations for three member variables, each with their
own type and name. The semicolon after the struct definition is mandatory, unlike in some other languages.

After the struct definition, we can create objects that have Person type. The following program creates two local
variables of type Person:

int main() {
Person elise;
Person tali;

}

Each Person object has its own subobjects name, age, and is_ninja located within the memory for the Person
object, as shown in Figure 10.1.

Since we did not explicitly initialize the Person objects, they are default initialized by in turn default initializing their
member subobjects. The age and is_ninjamembers are of atomic type, so they are default initialized to indeterminate
values. The name member is of class type, and it is default initialized to an empty string. In the future, we will see that
class types can specify how they are initialized.

47

Programming and Data Structures, Release 0.3

Stack

0x1038 ? age

0x103c ? is_ninja

0x1020 "" name

Person

0x1018 ? age

0x1000 "" name

main

tali

Person

elise

0x101c ? is_ninja

Figure 10.1: Memory for two objects of Person type.

We can explicitly initialize a Person object with an initializer list, similar to how we can initialize the elements of a
vector:

Person elise = { "Elise", 22, true };

This initializes the struct member-by-member from the initializer list: the name member is initialized with "Elise",
the age member is initialized with 22, and the is_ninja member is initialized with true. If fewer initializers are
provided than members, the remaining members are implicitly initialized (with zeros for atomic types).

We can also copy structs when initializing a new struct or assigning to an existing one:

Person tali = elise;

By default, copying a struct copies the members one by one.2 The result in memory is illustrated in Figure 10.2.

We can access individual members of a struct with the dot (.) operator. The struct object goes on the left-hand side,
and the member name on the right:

tali.name = "Tali";

Here, we have assigned the string "Tali" to the name member of the tali object. Figure 10.3 shows the result in
memory.

As the figure shows, tali and elise each have their own name members, so that modifying one does not affect the
other.

We can use an initializer list for a struct in contexts other than initialization. The following uses an initializer list in an
assignment (which is different from an initialization, since the target object already exists), as well as an argument to a
function:

void Person_print_name(Person person) {
cout << person.name << endl;

(continues on next page)

2 We will see in the future that we can customize how class types are copied by overloading the copy constructor and assignment operator.

48

Programming and Data Structures, Release 0.3

Stack

0x1038 22 age

0x103c true is_ninja

0x1020 "Elise" name

Person

0x1018 22 age

0x1000 "Elise" name

main

tali

Person

elise

0x101c true is_ninja

Figure 10.2: By default, copying a class-type object copies each of the member variables.

Stack

0x1038 22 age

0x103c true is_ninja

0x1020 "Tali" name

Person

0x1018 22 age

0x1000 "Elise" name

main

tali

Person

elise

0x101c true is_ninja

Figure 10.3: The result of modifying an individual member variable.

49

Programming and Data Structures, Release 0.3

(continued from previous page)

}

int main() {
Person tali;
tali = { "Tali", 21, true }; // in an assignment
Person_print_name({ "Elise", 22, true }); // as argument to function

}

When passing a struct to a function, we have our usual default of value semantics, meaning that a copy is made. For
instance, the following erroneous definition of Person_birthday() does not modify the argument object, since it
receives a copy of the argument:

// MODIFIES: person
// EFFECTS: Increases the person's age by one. If they are now older
// than 70, they are no longer a ninja.
void Person_birthday(Person person) {
++person.age;
if (person.age > 70) {
person.is_ninja = false;

}
}

Figure 10.4 illustrates what happens when we call Person_birthday() on a Person object:

Stack

main

Person_birthday

Person

0x1038 22 age

0x1020 "Elise" name
person

0x103c true is_ninja

23

Person

0x1018 22 age

0x1000 "Elise" name
elise

0x101c true is_ninja

Figure 10.4: Passing a class-type object by value produces a copy that lives in the activation record of the callee.

The modification happens on a Person object that lives in the activation record for Person_birthday(). This copy
will die when Person_birthday() returns, and the object that lives in main() is unchanged.

Instead, we need to pass the struct indirectly, either using a reference or a pointer. The following uses a pointer, and its
execution is shown in Figure 10.5:

50

Programming and Data Structures, Release 0.3

// REQUIRES: ptr points to a valid Person object
// MODIFIES: *ptr
// EFFECTS: Increases the person's age by one. If they are now older
// than 70, they are no longer a ninja.
void Person_birthday(Person *ptr) {
++(*ptr).age;
if ((*ptr).age > 70) {
(*ptr).is_ninja = false;

}
}

Stack

main

0x1020 0x1000 ptr

Person_birthday

Person

0x1018 22 age

0x1000 "Elise" name
person

0x101c true is_ninja

23

Figure 10.5: Passing a pointer to a class-type object avoids making a copy of that object.

The code uses the * operator to dereference the pointer, then uses the . operator to access a member of the resulting
Person object. The parentheses around the dereference are required because the postfix . has higher precedence than
the prefix *.

C++ provides the -> operator as a shorthand for dereference followed by member access. The following definition of
Person_birthday() is equivalent to the one above:

void Person_birthday(Person *ptr) {
++ptr->age;
if (ptr->age > 70) {
ptr->is_ninja = false;

}
}

Of course, this one is nicer to read and to write, so we should make use of the -> operator when possible.

The Person_birthday() function needs to modify the underlying Person object, so we cannot declare the Person
as const. If a function does not need to modify the underlying object, then it should be declared as const. Declaring
a struct as const prevents any of its members from being modified.

// REQUIRES: ptr points to a valid Person object
// MODIFIES: nothing
// EFFECTS: Prints a one-sentence description of the person
void Person_describe(const Person *ptr) {

(continues on next page)

51

Programming and Data Structures, Release 0.3

(continued from previous page)

cout << ptr->name << " is " << ptr->age << " years old and ";
if (ptr->is_ninja) {
cout << "is a ninja!" << endl;

} else {
cout << "is not a ninja." << endl;

}
}

Except for very small structs, we generally do not pass structs by value, since creating a copy of a large struct can be
expensive. Instead, we pass them by pointer or by reference. If the original object needs to be modified, we use a
pointer or reference to non-const. Otherwise, we use a pointer or reference to const:

void func_ptr(const Person *p); // const can go on either side of
void func_ref(Person const &p); // Person, but must be to the left

// of * or & for the Person itself
// to be non-modifiable

10.1 Compound Objects and const

Since a class-type object has a value, it can be declared as const, which prevents any of its members from being
modified. As an example, consider the following struct definition:

struct Foo {
int num;
int *ptr;

};

Like any const object, a const Foo must be initialized upon creation:

int main() {
int x = 3;
const Foo foo = { 4, &x };
...

}

Foo

ptr0x10000x1008

num40x1004 foo

Stack

main

x30x1000

Figure 10.6: Contents of a Foo object. Declaring the object as const only prohibits modifications to the subobjects
contained within the memory for the object.

10.1. Compound Objects and const 52

Programming and Data Structures, Release 0.3

With foo declared as const, attempting to modify any of its members results in a compile error:

foo.num = -1; // ERROR
++foo.ptr; // ERROR

Modifications cannot be made to any of the subobjects that live within the memory of an object declared const.3

On the other hand, it is possible to modify the object that foo.ptr points to:

*foo.ptr = -1;
cout << x; // prints -1

Since foo is const, foo.ptr is a const pointer, and the expression has type int * const. This means it is not a
pointer to const, so modifying the value of the object it is pointing at is allowed. Looking at it another way, the object
x lives outside the memory for foo, so the fact that foo is const has no effect on whether or not x can be modified
through a pointer that lives within foo.

3 A member can be declared mutable, which allows it to be modified even if the object that contains it is const.

10.1. Compound Objects and const 53

https://en.cppreference.com/w/cpp/language/cv#mutable_specifier

CHAPTER

ELEVEN

ABSTRACT DATA TYPES IN C

Recall that abstraction is the idea of separating what something is from how it works, by separating interface from
implementation. Previously, we saw procedural abstraction, which applies abstraction to computational processes.
With procedural abstraction, we use functions based on their signature and documentation without having to know
details about their definition.

The concept of abstraction can be applied to data as well. An abstract data type (ADT) separates the interface of a data
type from its implementation, and it encompasses both the data itself as well as functionality on the data. An example
of an ADT is the string type in C++, used in the following code:

string str1 = "hello";
string str2 = "jello";
cout << str1 << endl;
if (str1.length() == str2.length()) {
cout << "Same length!" << endl;

}

This code creates two strings and initializes them to represent different values, prints out one of them, and compares
the lengths of both – all without needing to any details about the implementation of string. Rather, it relies solely on
the interface provided by the string abstraction.

A string is an example of a full-featured C++ ADT, providing customized initialization, overloaded operations such as
the stream-insertion operator, member functions, and so on. We will start with the simpler model of C ADTs, deferring
C++ ADTs until next time.

The C language only has support for structs with data members (i.e. member variables). While this is sufficient to
represent the data of an ADT, the functions that operate on the ADT must be defined separately from the struct. The
following is the data definition of an ADT to represent triangles:

// A triangle ADT.
struct Triangle {
double a;
double b;
double c;

};

int main() {
Triangle t1 = { 3, 4, 5 };
Triangle t2 = { 2, 2, 2 };

}

The Triangle struct contains three member variables, one for each side of the triangle, each represented by a double.
The example in main() creates and initializes two Triangle structs, resulting in the memory layout in Figure 11.1.

54

Programming and Data Structures, Release 0.3

Stack

Triangle

0x1020 2.0 b

0x1028 2.0 c

0x1018 2.0 a

0x1008 4.0 b

0x1010 5.0 c

0x1000 3.0 a

main

t1

t2

Triangle

Figure 11.1: Two local Triangle objects.

An ADT also includes functions that operate on the data. We can define functions to compute the perimeter of a triangle
or to modify it by scaling each of the sides by a given factor:

// REQUIRES: tri points to a valid Triangle
// EFFECTS: Returns the perimeter of the given Triangle.
double Triangle_perimeter(const Triangle *tri) {
return tri->a + tri->b + tri->c;

}

// REQUIRES: tri points to a valid Triangle; s > 0
// MODIFIES: *tri
// EFFECTS: Scales the sides of the Triangle by the factor s.
void Triangle_scale(Triangle *tri, double s) {
tri->a *= s;
tri->b *= s;
tri->c *= s;

}

Our naming convention for functions that are part of a C-style ADT is to prepend the function name with the name of
the ADT, Triangle in this case. The first parameter is a pointer to the actual Triangle object the function works on.
If the object need not be modified, we declare the pointer as a pointer to const.

The following demonstrates how to use the Triangle ADT functions:

int main() {
Triangle t1 = { 3, 4, 5 };
Triangle_scale(&t1, 2); // sides are now 6, 8, 10
cout << Triangle_perimeter(&t1) << endl; // prints 24

}

The code creates a Triangle as a local variable and initializes it with sides 3, 4, and 5. It then scales the sides by
a factor of 2 by calling Triangle_scale(). Since that function takes a pointer to the actual triangle, we use the
address-of operator to obtain and pass the address of t1, as shown in Figure 11.2.

55

Programming and Data Structures, Release 0.3

Stack

main

0x1020 2.0 s

Triangle_scale

0x1018 0x1000 tri

Triangle

0x1008 4.0 b

0x1010 5.0 c

0x1000 3.0 a
t1

Figure 11.2: Passing a pointer to a Triangle object.

The function scales each side of the triangle, resulting in t1 having sides of 6, 8, and 10. We then call
Triangle_perimeter() on the address of t1, which computes the value 24.

In this example, the code in main() need not worry about the implementation of Triangle_scale() or
Triangle_perimeter(). Instead, it relies on abstraction, using the functions for what they do rather than how they
do it. However, in initializing t1 itself, the code is relying on implementation details – specifically, that a Triangle is
implemented as three double members that represent the lengths of the sides. If the implementation were to change
to represent a triangle as two sides and the angle between them, for instance, then the behavior of the code in main()
would change, and it would no longer print 24. Thus, we need to abstract the initialization of a Triangle, avoiding
having to initialize each member directly. We do so by defining a Triangle_init() function:

// REQUIRES: tri points to a Triangle object
// MODIFIES: *tri
// EFFECTS: Initializes the triangle with the given side lengths.
void Triangle_init(Triangle *tri, double a_in,

double b_in, double c_in) {
tri->a = a_in;
tri->b = b_in;
tri->c = c_in;

}

int main() {
Triangle t1;
Triangle_init(&t1, 3, 4, 5);
Triangle_scale(&t1, 2);
cout << Triangle_perimeter(&t1) << endl;

}

The user of the Triangle ADT creates an object without an explicit initialization and then calls Triangle_init()
on its address to initialize it, providing the side lengths. After that call, the Triangle has been properly initialized and
can be used with the other ADT functions. Now if the implementation of Triangle changes, as long as the interface
remains the same, the code in main() will work as before. The code within the ADT, in the Triangle_... functions,
will need to change, but outside code that uses the ADT will not. The following illustrates an implementation of
Triangle that represents a triangle by two sides and an angle:

56

Programming and Data Structures, Release 0.3

// A triangle ADT.
struct Triangle {
double side1;
double side2;
double angle;

};

// REQUIRES: tri points to a Triangle object
// MODIFIES: *tri
// EFFECTS: Initializes the triangle with the given side lengths.
void Triangle_init(Triangle *tri, double a_in,

double b_in, double c_in) {
tri->side1 = a_in;
tri->side2 = b_in;
tri->angle = std::acos((std::pow(a_in, 2) + std::pow(b_in, 2) -

std::pow(c_in, 2)) /
(2 * a_in * b_in));

}

// REQUIRES: tri points to a valid Triangle
// EFFECTS: Returns the first side of the given Triangle.
double Triangle_side1(const Triangle *tri) {
return tri->side1;

}

// REQUIRES: tri points to a valid Triangle
// EFFECTS: Returns the second side of the given Triangle.
double Triangle_side2(const Triangle *tri) {
return tri->side2;

}

// REQUIRES: tri points to a valid Triangle
// EFFECTS: Returns the third side of the given Triangle.
double Triangle_side3(const Triangle *tri) {
return std::sqrt(std::pow(tri->side1, 2) +

std::pow(tri->side2, 2) -
2 * tri->side1 * tri->side2 * std::acos(tri->angle));

}

// REQUIRES: tri points to a valid Triangle
// EFFECTS: Returns the perimeter of the given Triangle.
double Triangle_perimeter(const Triangle *tri) {
return Triangle_side1(tri) + Triangle_side2(tri) + Triangle_side3(tri);

}

// REQUIRES: tri points to a valid Triangle; s > 0
// MODIFIES: *tri
// EFFECTS: Scales the sides of the Triangle by the factor s.
void Triangle_scale(Triangle *tri, double s) {
tri->side1 *= s;
tri->side2 *= s;

}

57

Programming and Data Structures, Release 0.3

Here, we have added accessor or getter functions for each of the sides, allowing a user to obtain the side lengths without
needing to know implementation details. Even within the ADT itself, we have used Triangle_side3() from within
Triangle_perimeter() to avoid code duplication.

The REQUIRES clauses of the ADT functions make a distiction between Triangle objects and valid Triangle ob-
jects. The former refers to an object that is of type Triangle but may not have been properly initialized, while the latter
refers to a Triangle object that has been initialized by a call to Triangle_init(). Except for Triangle_init(),
the ADT functions all work on valid Triangles.

Now that we have a full definition of a C-style ADT, we adhere to the following convention for working with one: the
user of a C-style ADT may only interact with the ADT through its interface, meaning the functions defined as part of
the ADT’s interface. The user is generally prohibited from accessing struct member variables directly, as those are
implementation details of the ADT. This convention also holds in testing an ADT, since tests should only exercise
the behavior of an ADT and not its implementation.

11.1 Representation Invariants

When designing an abstract data type, we must build a data representation on top of existing types. Usually, there will
be cases where the underlying data representation permits combinations of values that do not make sense for our ADT.
For example, not every combination of three doubles represents a valid triangle – a doublemay have a negative value,
but a triangle may not have a side with negative length. The space of values that represent valid instances of a triangle
abstraction is a subset of the set of values that can be represented by three doubles, as illustrated in Figure 11.3.

(3,4,5)

(4,5,8.3)(4,5,9)

(−3,4,5)

3

4

5

Representation type (a,b,c) Abstract type

representation invariant

Figure 11.3: Representation invariants define the valid subset of the values allowed by the data representation of an
ADT.

Thus, when designing an ADT, we need to determine the set of values that are valid for the ADT. We do so by specifying
representation invariants for our ADT, which describe the conditions that must be met in order to make an object valid.
For a triangle represented as a double for each side, the following representation invariants must hold:

• The length of each side must be positive.

• The triangle inequality must hold: the sum of any two sides must be strictly greater than the remaining side.

Often, we document the representation invariants as part of the ADT’s data definition:

11.1. Representation Invariants 58

Programming and Data Structures, Release 0.3

// A triangle ADT.
struct Triangle {
double a;
double b;
double c;
// INVARIANTS: a > 0 && b > 0 && c > 0 &&
// a + b > c && a + c > b && b + c > a

};

We then enforce the invariants when constructing or modifying an ADT object by encoding them into the REQUIRES
clauses of our functions. We can use assertions to check for them as well, where possible:

// REQUIRES: tri points to a Triangle object;
// each side length is positive (a > 0 && b > 0 && c > 0);
// the sides meet the triangle inequality
// (a + b > c && a + c > b && b + c > a)
// MODIFIES: *tri
// EFFECTS: Initializes the triangle with the given side lengths.
void Triangle_init(Triangle *tri, double a, double b, double c) {

assert(a > 0 && b > 0 && c > 0); // positive lengths
assert(a + b > c && a + c > b && b + c > a); // triangle inequality
tri->a = a;
tri->b = b;
tri->c = c;

}

// REQUIRES: tri points to a valid Triangle; s > 0
// MODIFIES: *tri
// EFFECTS: Scales the sides of the Triangle by the factor s.
void Triangle_scale(Triangle *tri, double s) {
assert(s > 0); // positive lengths
tri->a *= s;
tri->b *= s;
tri->c *= s;

}

11.2 Plain Old Data

As mentioned above, we adhere to the convention of only interacting with an ADT through its interface. Usually, this
means that we do not access the data members of an ADT in outside code. However, occasionally we have the need for
an ADT that provides no more functionality than grouping its members together. Such an ADT is just plain old data
(POD)4, without any functions that operate on that data, and we define its interface to be the same as its implementation.

The following is an example of a Pixel struct used as a POD:

// A pixel that represents red, green, and blue color values.
struct Pixel {
int r; // red

(continues on next page)

4 We use the term “plain old data” in the generic sense and not as the specific C++ term. C++ has a generalization of POD types called aggregates.
Technically, the Person struct we saw last time is an aggregate but not a POD. What we mention here for POD types generally applies to aggregates
as well.

11.2. Plain Old Data 59

https://en.wikipedia.org/wiki/Passive_data_structure
https://en.wikipedia.org/wiki/C%2B%2B_classes#Aggregate_classes

Programming and Data Structures, Release 0.3

(continued from previous page)

int g; // green
int b; // blue

};

int main() {
Pixel p = { 255, 0, 0 };
cout << p.r << " " << p.g << " " << p.b << endl;

}

The Pixel ADT consists of just a data representation with no further functionality. Since it is a POD, its interface and
implementation are the same, so it is acceptable to access its members directly.

11.3 Abstraction Layers

As with procedural abstraction, data abstraction is also defined in layers, with each layer interacting solely with the
interface of the layer below and not its implementation. For example, we can represent an image using three matrices,
one for each color channel. Any code that uses an image relies on the image interface, without needing to know that it
is implemented over three matrices. Each matrix in turn can be represented using a single-dimensional vector. Code
that uses a matrix relies on the 2D abstraction provided by the interface without needing to know that it is implemented
as a 1D vector under the hood.

0 1 2 3 4

0 (0,0,0) (0,0,0) (255,255,250) (0,0,0) (0,0,0)

1 (255,255,250) (126,66,0) (126,66,0) (126,66,0) (255,255,250)

2 (126,66,0) (0,0,0) (255,219,183) (0,0,0) (126,66,0)

3 (255,219,183) (255,219,183) (0,0,0) (255,219,183) (255,219,183)

4 (255,219,183) (0,0,0) (134,0,0) (0,0,0) (255,219,183)

0 1 2 3 4

0 0 0 255 0 0

1 255 126 126 126 255

2 126 0 255 0 126

3 255 255 0 255 255

4 255 0 134 0 255

0 1 2 3 4

0 0 0 255 0 0

1 255 66 66 66 255

2 66 0 219 0 66

3 219 219 0 219 219

4 219 0 0 0 219

0 1 2 3 4

0 0 0 250 0 0

1 250 0 0 0 250

2 0 0 183 0 0

3 183 183 0 183 183

4 183 0 0 0 183

Image
"what".

Image "how",
using Matrix

"what".

0 0
2
5
5

0 0
2
5
5

1
2
6

1
2
6

1
2
6

2
5
5

1
2
6

0
2
5
5

0
1
2
6

2
5
5

2
5
5

0
2
5
5

2
5
5

2
5
5

0
1
3
4

0
2
5
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Matrix
"how".

Figure 11.4: Abstraction layers for an image.

11.3. Abstraction Layers 60

Programming and Data Structures, Release 0.3

11.4 Testing an ADT

As mentioned previously, code outside of an ADT’s implementation must interact with the ADT solely through its
interface, including test code. Modifying an ADT’s implementation should not require modifying its test code – we
should be able to immediately run our regression tests in order to determine whether or not the ADT still works.

Adhering to the interface often means that we can’t test each ADT function individually. For instance, we can-
not test Triangle_init() in isolation; instead, we can test it in combination with the side accessors (e.g.
Triangle_side1()) to determine whether or not the initialization works correctly. Instead of testing individual func-
tions, we test individual behaviors, such as initialization.

As another example, let’s proceed to design and test an ADT to represent a coordinate in two-dimensional space, using
the principle of test-driven development that we saw previously. We will use polar coordinates, which represent a
coordinate by the radius from the origin and angle from the horizontal axis, and we reflect this in the name of the ADT
and its interface.

Figure 11.5: Polar representation of a point in two-dimensional space.

We start by determining the interface of the ADT:

// A set of polar coordinates in 2D space.
struct Polar;

// REQUIRES: p points to a Polar object
// MODIFIES: *p
// EFFECTS: Initializes the coordinate to have the given radius and
// angle in degrees.
void Polar_init(Polar* p, double radius, double angle);

// REQUIRES: p points to a valid Polar object
// EFFECTS: Returns the radius portion of the coordinate as a
// nonnegative value.
double Polar_radius(const Polar* p);

// REQUIRES: p points to a valid Polar object
// EFFECTS: Returns the angle portion of the coordinate in degrees as
// a value in [0, 360).
double Polar_angle(const Polar* p);

We then proceed to write some test cases, following the principles of test-driven development:

11.4. Testing an ADT 61

Programming and Data Structures, Release 0.3

// Basic test of initializing a Polar object.
TEST(test_init_basic) {
Polar p;
Polar_init(&p, 5, 45);

ASSERT_EQUAL(Polar_radius(&p), 5);
ASSERT_EQUAL(Polar_angle(&p), 45);

}

We can then proceed to define a data representation. As part of this process, we should consider what representation
invariants our ADT should have. For our Polar ADT, a reasonable set of invariants is that the radius is nonnegative,
and the angle is in the range [0, 360) (using degrees rather than radians)5:

struct Polar {
double r;
double phi;
// INVARIANTS: r >= 0 && phi >= 0 && phi < 360

};

Now that we have a data representation, we can make an initial attempt at implementing the functions as well:

void Polar_init(Polar* p, double radius, double angle) {
p->r = radius;
p->phi = angle;

}

double Polar_radius(const Polar* p) {
return p->r;

}

double Polar_angle(const Polar* p) {
return p->phi;

}

We can run our existing test cases to get some confidence that our code is working. In addition, the process of coming
up with a data representation, representation invariants, and function definitions often suggests new test cases. For
instance, the following test cases check that the representation invariants are met when Polar_init() is passed values
that don’t directly meet the invariants:

// Tests initialization with a negative radius.
TEST(test_negative_radius) {
Polar p;
Polar_init(&p, -5, 225);
ASSERT_EQUAL(Polar_radius(&p), 5);
ASSERT_EQUAL(Polar_angle(&p), 45);

}

// Tests initialization with an angle >= 360.
TEST(test_big_angle) {
Polar p;
Polar_init(&p, 5, 405);

(continues on next page)

5 A complete set of invariants would likely also specify a canonical representation of the origin. For example, it may specify that if the radius is
0, then so is the angle.

11.4. Testing an ADT 62

Programming and Data Structures, Release 0.3

(continued from previous page)

ASSERT_EQUAL(Polar_radius(&p), 5);
ASSERT_EQUAL(Polar_angle(&p), 45);

}

Given our initial implementation, these test cases will fail. We can attempt to fix the problem as follows:

void Polar_init(Polar* p, double radius, double angle) {
p->r = std::abs(radius); // set radius to its absolute value
p->phi = angle;
if (radius < 0) { // rotate angle by 180 degrees if radius
p->phi = p->phi + 180; // was negative

}
}

Running our test cases again, we find that both test_negative_radius and test_big_angle still fail: the angle
value returned by Polar_angle() is out of the expected range. We can fix this as follows:

void Polar_init(Polar* p, double radius, double angle) {
p->r = std::abs(radius); // set radius to its absolute value
p->phi = angle;
if (radius < 0) { // rotate angle by 180 degrees if radius
p->phi = p->phi + 180; // was negative

}
p->phi = std::fmod(p->phi, 360); // mod angle by 360

}

Now both test cases succeed. However, we may have thought of another test case through this process:

// Tests initialization with a negative angle.
TEST(test_negative_angle) {
Polar p;
Polar_init(&p, 5, -45);
ASSERT_EQUAL(Polar_radius(&p), 5);
ASSERT_EQUAL(Polar_angle(&p), 315);

}

Unfortunately, this test case fails. We can try another fix:

void Polar_init(Polar* p, double radius, double angle) {
p->r = std::abs(radius); // set radius to its absolute value
p->phi = angle;
if (radius < 0) { // rotate angle by 180 degrees if radius
p->phi = p->phi + 180; // was negative

}
p->phi = std::fmod(p->phi, 360); // mod angle by 360
if (p->phi < 0) { // rotate negative angle by 360
p->phi += 360;

}
}

Our test cases now all pass.

11.4. Testing an ADT 63

CHAPTER

TWELVE

COMMAND-LINE ARGUMENTS

So far, the programs we have considered have not worked with user input. More interesting programs, however, incor-
porate behavior that responds to user input. We will see two mechanisms for passing input to a program: command-line
arguments and standard input.

Command-line arguments are arguments that are passed to a program when it is invoked from a shell or terminal. As
an example, consider the following command:

$ g++ -Wall -O1 -std=c++17 -pedantic test.cpp –o test

Here, g++ is the program we are invoking, and the arguments tell g++ what to do. For instance, the -Wall argument
tells the g++ compiler to warn about any potential issues in the code, -O1 tells the compiler to use optimization level
1, and so on.

Command-line arguments are passed to the program through arguments to main(). The main() function may have
zero parameters, in which case the command-line arguments are discarded. It can also have two parameters1, so the
signature has the following form:

int main(int argc, char *argv[]);

The first argument is the number of command-line arguments passed to the program, and it is conventionally named
argc. The second, conventionally named argv, contains each command-line argument as a C-style string. An array
parameter is actually a pointer parameter, so the following signature is equivalent:

int main(int argc, char **argv);

Thus, the second parameter is a pointer to the first element of an array, each element of which is a pointer to the start
of a C-style string, as shown in Figure 12.1.

The command-line arguments also include the name of the program as the first argument – this is often used in printing
out error messages from the program.

We recommend converting command-line arguments to std::string before working with them, as it is less error-
prone than working with C-style strings directly.

As an example, the following program takes an arbitrary number of integral arguments and computes their sum:

#include <iostream>
#include <string> // for string type and stoi() function

using namespace std;

int main(int argc, char *argv[]) {
(continues on next page)

1 Implementations may also allow other signatures for main().

64

Programming and Data Structures, Release 0.3

argv g + + \0

- W a l l \0

- O 1 \0

- o \0

t e s t \0

...
8

argc

Figure 12.1: Representation of command-line arguments.

(continued from previous page)

int sum = 0;
for (int i = 1; i < argc; ++i) {
string arg = argv[i];
sum += stoi(argv[i]);

}
cout << "sum is " << sum << endl;

}

The first argument is skipped, since it is the program name. Each remaining argument is converted to an int by
the stoi() function, which takes a string as the argument and returns the integer that it represents. For example,
stoi("123") returns the number 123 as an int.

The following is an example of running the program:

$./sum.exe 2 4 6 8 10
sum is 30

65

CHAPTER

THIRTEEN

INPUT AND OUTPUT (I/O)

User input can also be obtained through standard input, which receives data that a user types into the console. In C++,
the cin stream reads data from standard input. Data is extracted into an object using the extraction operator >>, and the
extraction interprets the raw character data according to the target data type. For example, the following code extracts
to string, which extracts individual words that are separated by whitespace:

string word;
while (cin >> word) {

cout << "word = '" << word << "'" << endl;
}

The extraction operation evaluates to the cin stream, which has a truth value – if the extraction succeeds, it is true, but
if the extraction fails, the truth value is false. Thus, the loop above will continue as long as extraction succeeds.

The following is an example of the program:

$./words.exe
hello world!
word = 'hello'
word = 'world!'
goodbye
word = 'goodbye'

The program only receives input after the user presses the enter key. The first line the user entered contains two words,
each of which gets printed out. Then the program waits for more input. Another word is entered, so the program reads
and prints it out. Finally, the user in this example inputs an end-of-file character – on Unix-based systems, the sequence
Ctrl-d enters an end of file, while Ctrl-z does so on Windows systems. The end-of-file marker denotes the end of a
stream, so extracting from cin fails at that point, ending the loop above.

The program above prints output to standard output, represented by the cout stream. The insertion operator << inserts
the text representation of a value into an output stream.

13.1 I/O Redirection

Shells allow input redirection, which passes the data from a file to standard input rather than reading from the keyboard.
For instance, if the file words.in contains the data:

hello world!
goodbye

Then using the < symbol before the filename redirects the file to standard input at the command line:

66

Programming and Data Structures, Release 0.3

$./words.exe < words.in
word = 'hello'
word = 'world!'
word = 'goodbye'

A file has an implicit end of file at the end of its data, and the program terminates upon reaching the end of the file.

We can also do output redirection, where the shell writes the contents of standard output to a file. The symbol for
output redirection is >:

$./words.exe > result.out
hello world!
goodbye
$ cat result.out
word = 'hello'
word = 'world!'
word = 'goodbye'

Here, we redirect the output to the file result.out. We then enter input from the keyboard, ending with the Ctrl-d
sequence. When the program ends, we use the cat command to display the contents of result.out.

Input and output redirection can also be used together:

$./words.exe < words.in > result.out
$ cat result.out
word = 'hello'
word = 'world!'
word = 'goodbye'

13.2 Example: Adding Integers

Using standard input, we can write a program that adds up integers entered by a user. The program will terminate either
upon reaching an end of file or if the user types in the word done:

#include <iostream>
#include <string> // for stoi()

using namespace std;

int main() {
int sum = 0;
cout << "Enter some numbers to sum." << endl
string word;
while (cin >> word && word != "done") {
sum += stoi(word);

}
cout << "sum is " << sum << endl;

}

The code extracts to a string so that it can be compared to the string "done". (The latter is a C-style string, but C++
strings can be compared with C-style strings using the built-in comparison operators.)

The following is an example of running the program:

13.2. Example: Adding Integers 67

Programming and Data Structures, Release 0.3

$./sum
Enter some numbers to sum.
2
4
6
done
sum is 12

An alternate version of the program extracts directly to an int. However, it can only be terminated by an end of file or
other failed extraction:

#include <iostream>

using namespace std;

int main() {
int sum = 0;
cout << "Enter some numbers to sum." << endl
int number;
while (cin >> number) {
sum += number;

}
cout << "sum is " << sum << endl;

}

13.3 File I/O

A program can also read and write files directly using file streams. It must include the <fstream> header, and it can
then use an ifstream to read from a file and an ofstream to write to a file. The former supports the same interface
as cin, while the latter has the same interface as cout.

An ifstream object can be created from a file name:

string filename = "words.in";
ifstream fin(filename);

Alternatively, the ifstream object can be created without a file name, and then its open() function can be given the
name of the file to open:

string filename = "words.in";
ifstream fin;
fin.open(filename);

In general, a program should check if the file was successfully opened, regardless of the mechanism used to create the
ifstream:

if (!fin.is_open()) {
cout << "open failed" << endl;
return 1;

}

Once we’ve determined the file is open, we can read from it like cin. The following program reads individual words
from the file words.in and prints them:

13.3. File I/O 68

Programming and Data Structures, Release 0.3

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main() {
string filename = "words.in";
ifstream fin;
fin.open(filename);
if (!fin.is_open()) {
cout << "open failed" << endl;
return 1;

}
string word;
while (fin >> word) {
cout << "word = '" << word << "'" << endl;

}
fin.close(); // optional

}

The program closes the file before exiting. Doing so explicitly is optional – it will happen automatically at the end of
the ifstream object’s lifetime (e.g. when it goes out of scope if it is a local variable).

Best practice is to extract from an input stream, whether it is cin or an ifstream, in the test of a loop or conditional.
That way, the test will evaluate to false if the extraction fails. The following examples all print the last word twice
because they do not check for failure between extracting and printing a word:

while (!fin.fail()) {
fin >> word;
cout << word;

}

while (fin.good()) {
fin >> word;
cout << word;

}

while (!fin.eof()) {
fin >> word;
cout << word;

}

while (fin) {
fin >> word;
cout << word;

}

The following is printed when using any of the loops above:

$./main.exe
hello
world!
goodbye

(continues on next page)

13.3. File I/O 69

Programming and Data Structures, Release 0.3

(continued from previous page)

goodbye

Multiple extractions can be placed in the test of a loop by chaining them. The test evaluates to true when all extractions
succeed. For example, the following reads two words at a time:

string word1, word2;
while (fin >> word1 >> word2) {

cout << "word1 = '" << word1 << "'" << endl;
cout << "word2 = '" << word2 << "'" << endl;

}

For words.in, only the first two words are printed, since the test will fail in the second iteration when it tries to read
a fourth word:

$./main.exe
word1 = 'hello'
word2 = 'world!'

An entire line can be read using the getline() function, which takes in an input stream and a target string (by reference)
and returns whether or not reading the line succeeded. If so, the target string will contain the full line read:

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main() {
string filename = "hello.txt";
ifstream fin;
fin.open(filename);
if (!fin.is_open()) {
cout << "open failed" << endl;
return 1;

}
string line;
while (getline(fin, line)) {
cout << "line = '" << line << "'" << endl;

}
}

For words.in, this will result in:

$./main.exe
line = 'hello world!'
line = 'goodbye'

An ofstreamworks similarly to an ifstream, except that it is used for printing output to a file. The following program
prints data to the file output.txt:

#include <iostream>
#include <fstream>
#include <string>

(continues on next page)

13.3. File I/O 70

Programming and Data Structures, Release 0.3

(continued from previous page)

using namespace std;

int main() {
const int SIZE = 4;
int data[SIZE] = { 1, 2, 3, 4 };
string filename = "output.txt";
ofstream fout;
fout.open(filename);
if (!fout.is_open()) {
cout << "open failed" << endl;
return 1;

}
for (int i = 0; i < 4; ++i) {
fout << "data[" << i << "] = " << data[i] << endl;

}
fout.close(); // optional

}

The following shows the resulting data in output.txt:

$ cat output.txt
data[0] = 1
data[1] = 2
data[2] = 3
data[3] = 4

13.3. File I/O 71

CHAPTER

FOURTEEN

MORE ON STREAMS

Previously, we learned about the standard input and output streams, as well as file streams. We examine the relationship
between streams more closely now, as well as how to write unit tests using string streams.

A stream is an abstraction over a source of input, from which we can read data, or a sink of output, to which we can write
data. Streams support the abstraction of character-based input and output over many underlying resources, including
the console, files, the network, strings, and so on.

In C++, input streams generally derive from istream2. We will see what this means specifically when we look at
inheritance and polymorphism in the future. For our purposes right now, this means that we can pass different kinds of
input-stream objects to a function that takes in a reference to an istream. Similarly, output streams generally derive
from ostream, and we can pass different kinds of output-stream objects to a function that takes in a reference to an
ostream.

istream

ifstream

ostream

cin

fin

istringstream ostringstream

ofstream

cout

cerr

Input Output

fout

Figure 14.1: Relationships between different kinds of input and output streams.

To write data into an output stream, we use the insertion operator <<. The actual data written out depends on both the
value itself as well as its type. For instance, if we use a string as the right-hand-side operand, the insertion operation
will write the characters from the string into the stream:

2 The istream type is actually an alias for basic_istream<char>, which is an input stream that supports input using the char type. The same
goes for ostream and basic_ostream<char>.

72

Programming and Data Structures, Release 0.3

int i = 123;
cout << i; // writes the characters 123
double d = 12.3;
cout << d; // writes the characters 12.3
char c = 'c';
cout << c; // writes the character c
string s = "Hello";
cout << s; // writes the characters Hello

Expressions that apply an operator generally evaluate to a value. In the case of stream insertion, the result is the actual
stream object itself. This allows us to chain insertion operations:

cout << i << d << endl;
// equivalent to ((cout << i) << d) << endl;
// ^^^^^^^^^
// evaluates back to the cout object

To read data from an input stream, we use the extraction operator >>, with an object on the right-hand side. The
characters are interpreted according to the type of the object. For built-in types, whitespace is generally skipped when
extracting.

char c;
cin >> c; // reads a single character; does not skip whitespace
string s;
cout >> s; // reads in one "word", delimited by whitespace
int i;
cin >> i; // attempts to parse the next characters as an integer value
double d;
cin >> d; // attempts to parse the next characters as a floating-point value

As with the insertion operator, an expression that applies the extraction operator evaluates back to the stream itself,
allowing extraction operations to be chained:

cin >> c >> s >> i >> d;

14.1 String Streams

When writing unit tests, we often want the tests to be standalone without requiring access to external data. For tests that
work with streams, we can use string streams rather than standard input/output or file streams. To use a string stream,
we #include <sstream>. We can then use an istringstream as an input stream, and an ostringstream as an
output stream.

The following is an example of using an istringstream to represent input data for testing a function that takes in an
input stream:

TEST(test_image_basic) {
// A hardcoded PPM image
string input = "P3\n2 2\n255\n255 0 0 0 255 0 \n";
input += "0 0 255 255 255 255 \n";

// Use istringstream for simulated input
istringstream ss_input(input);

(continues on next page)

14.1. String Streams 73

Programming and Data Structures, Release 0.3

(continued from previous page)

Image *img = new Image;
Image_init(img, ss_input);

ASSERT_EQUAL(Image_width(img), 2);
Pixel red = { 255, 0, 0 };
ASSERT_TRUE(Pixel_equal(Image_get_pixel(img, 0, 0), red));
delete img;

}

We start with a string that contains the actual input data and then construct an istringstream from that. We can
then pass that istringstream object to a function that has a parameter of type istream &. When that function
extracts data, the result will be the data from the string we used to construct the istringstream.

We can similarly use an ostringstream to test a function that takes an output stream:

TEST(test_matrix_basic) {
Matrix *mat = new Matrix;
Matrix_init(mat, 3, 3);
Matrix_fill(mat, 0);
Matrix_fill_border(mat, 1);

// Hardcoded correct output
string output_correct = "3 3\n1 1 1 \n1 0 1 \n1 1 1 \n";

// Capture output in ostringstream
ostringstream ss_output;
Matrix_print(mat, ss_output);
ASSERT_EQUAL(ss_output.str(), output_correct);
delete mat;

}

We default construct an ostringstream object and pass it to a function with a parameter of type ostream &. The
ostringstream will internally capture the data that the function inserts into it. We can then call .str() on the
ostringstream to obtain a string that contains that data, which we can then compare to another string that contains
the expected output.

14.1. String Streams 74

CHAPTER

FIFTEEN

PROGRAM DESIGN

Apologies – this section has not been written yet.

75

CHAPTER

SIXTEEN

ABSTRACT DATA TYPES IN C++

Now that we’ve seen the concept of abstract data types (ADTs), we proceed to examine the mechanisms C++ provides
for defining an ADT. Unlike C, C++ allows the data and functions of an ADT to be defined together. It also enables
an ADT to prevent access to internal implementation details, as well as to guarantee that an object is appropriately
initialized when it is created.

Our convention in this course is to use the word struct to refer to C-style ADTs, as well as to use the struct keyword to
define them. We use the word class to refer to C++ ADTs and use the class keyword to define them. We will discuss
the technical difference between the two keywords momentarily.

A C++ class includes both member variables, which define the data representation, as well as member functions that
operate on the data. The following is a Triangle class in the C++ style:

class Triangle {
double a;
double b;
double c;

public:
Triangle(double a_in, double b_in, double c_in);

double perimeter() const {
return this->a + this->b + this->c;

}

void scale(double s) {
this->a *= s;
this->b *= s;
this->c *= s;

}
};

The class has member variables for the length of each side, defining the data representation. We defer discussion of the
public: and Triangle(...) lines for now. Below those lines are member functions for computing the perimeter of
a triangle and scaling it by a factor.

The following is an example of creating and using a Triangle object:

int main() {
Triangle t1(3, 4, 5);
t1.scale(2);
cout << t1.perimeter() << endl;

}

76

Programming and Data Structures, Release 0.3

We initialize a triangle by passing in the side lengths as part of its declaration. We can then scale a triangle by using
the same dot syntax we saw for accessing a member variable: <object>.<function>(<arguments>).

Before we discuss the details of what the code is doing, let us compare elements of the C-style definition and use of the
triangle ADT with the C++ version. The following contrasts the definition of an ADT function between the two styles:

C-Style Struct C++ Class

void Triangle_scale(Triangle *tri,
double s) {

tri->a *= s;
tri->b *= s;
tri->c *= s;

}

class Triangle {
void scale(double s) {
this->a *= s;
this->b *= s;
this->c *= s;

}
};

The following compares how objects are created and manipulated:

C-Style Struct C++ Class

Triangle t1;
Triangle_init(&t1, 3, 4, 5);
Triangle_scale(&t1, 2);

Triangle t1(3, 4, 5);

t1.scale(2);

With the C-style struct, we defined a top-level Triangle_scale() function whose first argument is a pointer to the
Triangle object we want to scale. With a C++ class, on the other hand, we define a scale() member function within
the Triangle class itself. There is no need to prepend Triangle_, since it is clear that scale() is a member of the
Triangle class. The member function also does not explicitly declare a pointer parameter – instead, the C++ language
adds an implicit this parameter that is a pointer to the Triangle object we are working on. We can then use the this
pointer in the same way we used the explicit tri pointer in the C style.

As for using a Triangle object, in the C style, we had to separately create the Triangle object and then initialize it
with a call to Triangle_init(). In the C++ style, object creation and initialization are combined – we will see how
later. When invoking an ADT function, in the C case we have to explicitly pass the address of the object we are working
on. With the C++ syntax, the object is part of the syntax – it appears on the left-hand side of the dot, so the compiler
automatically passes its address as the this pointer of the scale() member function.

The following contrasts the definitions of a function that treats the ADT object as const:

C-Style Struct C++ Class

double Triangle_perimeter(
const Triangle *tri) {

return tri->a +
tri->b +
tri->c;

}

class Triangle {
double perimeter() const {
return this->a +

this->b +
this->c;

}
};

77

Programming and Data Structures, Release 0.3

C-Style Struct C++ Class

Stack

main

0x1020 2.0 s

Triangle_scale

0x1018 0x1000 tri

Triangle

0x1008 4.0 b

0x1010 5.0 c

0x1000 3.0 a
t1

Stack

main

0x1020 2.0 s

Triangle::scale

0x1018 0x1000 this

Triangle

0x1008 4.0 b

0x1010 5.0 c

0x1000 3.0 a
t1

Figure 16.1: Memory layout when scaling a triangle in the C and C++ styles.

In the C style, we add the const keyword to the left of the * when declaring the explicit pointer parameter, resulting
in tri being a pointer to const. In the C++ style, we don’t have an explicit parameter where we can add the const
keyword. Instead, we place the keyword after the parameter list for the function. The compiler will then make the
implicit this parameter a pointer to const, as if it were declared with the type const Triangle *. This allows us to
call the member function on a const Triangle:

const Triangle t1(3, 4, 5);
cout << t1.perimeter() << endl; // OK: this pointer is a pointer to const
t1.scale(2); // ERROR: conversion from const to non-const

As with accessing member variables, we can use the arrow operator to invoke a member function through a pointer:

Triangle t1(3, 4, 5);
const Triangle *ptr = &t1;
cout << ptr->perimeter() << endl; // OK: this pointer is a pointer to const
ptr->scale(2); // ERROR: conversion from const to non-const

16.1 Implicit this->

Since member variables and member functions are both located within the scope of a class, C++ allows us to refer to
members from within a member function without the explicit this-> syntax. The compiler automatically inserts the
member dereference for us:

class Triangle {
double a;
double b;
double c;

(continues on next page)

16.1. Implicit this-> 78

Programming and Data Structures, Release 0.3

(continued from previous page)

...

double perimeter() const {
return a + b + c; // Equivalent to: this->a + this->b + this->c

}
};

This is also the case for invoking other member functions. For instance, the following defines and uses functions to get
each side length:

class Triangle {
double a;
double b;
double c;

...

double side1() const {
return a;

}

double side2() const {
return b;

}

double side3() const {
return c;

}

double perimeter() const {
return side1() + side2() + side3();
// Equivalent to: this->side1() + this->side2() + this->side3()

}
};

In both cases, the compiler can tell that we are referring to members of the class and therefore inserts the this->.
However, if there are names in a closer scope that conflict with the member names, we must use this-> ourselves.
The following is an example:

class Triangle {
double a;

...

double set_side1(double a) {
this->a = a;

}
};

Here, the unqualified a refers to the parameter a, since it is declared in a narrower scope than the member variable. We
can still refer to the member a by qualifying its name with this->.

In general, we should avoid declaring variables in a local scope that hide names in an outer scope. Doing so in a
constructor or set function is often considered acceptable, but it should be avoided elsewhere.

16.1. Implicit this-> 79

Programming and Data Structures, Release 0.3

16.2 Member Accessibility

The data representation of an ADT is usually an implementation detail (plain old data being an exception). With C-
style structs, however, we have to rely on programmers to respect convention and avoid accessing member variables
directly. With C++ classes, the language provides us a mechanism for enforcing this convention: declaring members
as private prevents access from outside the class, while declaring them as public allows outside access.1 We give a set
of members a particular access level by placing private: or public: before the members – that access level applies
to subsequent members until a new access specifier is encountered, and any number of specifiers may appear in a class.
The following is an example:

class Triangle {
private:
double a;
double b;
double c;

public:
Triangle(double a_in, double b_in, double c_in);

double perimeter() const {
return a + b + c;

}

void scale(double s) {
a *= s;
b *= s;
c *= s;

}
};

In this example, the members a, b, and c are declared as private, while Triangle(), perimeter(), and scale() are
declared as public. Private members, whether variables or functions, can be accessed from within the class, even if
they are members of a different object of that class. They cannot be accessed from outside the class:

int main() {
Triangle t1(3, 4, 5); // OK: Triangle() is public
t1.scale(2); // OK: scale() is public
cout << t1.perimeter() << endl; // OK: perimeter() is public

// Die triangle! DIE!
t1.a = -1; // ERROR: a is private

}

With the class keyword, the default access level is private. Thus, the private: at the beginning of the Triangle
definition is redundant, and the following is equivalent:

class Triangle {
double a;
double b;
double c;

public:
(continues on next page)

1 Later, we will discuss protected members that are accessible to derived classes. This access level, however, is rarely used.

16.2. Member Accessibility 80

Programming and Data Structures, Release 0.3

(continued from previous page)

Triangle(double a_in, double b_in, double c_in);

...
};

We have seen previously that members declared within a struct are accessible from outside the struct. In fact, the
only difference between the struct and class keywords when defining a class type is the default access level: public
for struct but private for class.2 However, we use the two keywords for different conventions in this course.

16.3 Constructors

A constructor is similar to a member function, except that its purpose is to initialize a class-type object. In most cases,
C++ guarantees that a constructor is called when creating an object of class type.3 The following examples all call a
constructor:

Triangle t1; // calls zero-argument (default) constructor
Triangle t2(3, 4, 5); // calls three-argument constructor
Triangle t3 = Triangle(3, 4, 5); // calls three-argument constructor
// examples with "uniform initialization syntax":
Triangle t4{3, 4, 5}; // calls three-argument constructor
Triangle t5 = {3, 4, 5}; // calls three-argument constructor
Triangle t6 = Triangle{3, 4, 5}; // calls three-argument constructor

As can be seen above, there are many forms of syntax for initializing a Triangle object, all of which call a constructor.
When no arguments are provided, the zero-argument, or default, constructor is called. We will discuss this constructor
in more detail later.

The following does not call a constructor:

Triangle t7(); // declares a function called t7 that returns a Triangle

In fact, it doesn’t create an object at all. Instead, it declares a function named t7 that takes no arguments and returns a
Triangle. A function declaration can appear at local scope, so this is interpreted as a function declaration regardless
of whether it is at local or global scope.

So far, we declared a single constructor for Triangle as follows:

class Triangle {
double a;
double b;
double c;

public:
Triangle(double a_in, double b_in, double c_in);

};

2 This also applies to inheritance. We will see next time that private inheritance is the default for a class, and we will need to use the public
keyword to override this. The default for a struct is public inheritance.

3 The exception is aggregate initialization, where an initializer list is used to directly initialize the members of a class-type object. This is only
possible for aggregates, which are class types that have a restricted set of features. Our pattern of C-style structs obey the rules for an aggregate,
though we define init functions instead of using aggregate initialization. Our convention of C++ classes results in class types that are not aggregates,
so objects of such types can only be initialized through a constructor. We can still use initializer-list syntax for a non-aggregate – it will call a
constructor with the values in the initializer list as arguments.

16.3. Constructors 81

https://en.cppreference.com/w/cpp/language/aggregate_initialization

Programming and Data Structures, Release 0.3

The syntax is similar to declaring a member function, except:

• There is no return type.

• The name of the constructor is the same as the name of the class.

Like a member function, the constructor has an implicit this parameter that points to the object being initialized. As
in a member function, we can leave out this-> to access a member, as long as there is no local name that hides the
member. The following is a definition of the Triangle constructor:

class Triangle {
double a;
double b;
double c;

public:
// poor constructor implementation
Triangle(double a_in, double b_in, double c_in) {
a = a_in;
b = b_in;
c = c_in;

}
};

However, there is a problem with the definition above: the statements in the body of the constructor perform assignment,
not initialization. Thus, the member variables are actually default initialized and then assigned new values. In this case,
it is a minor issue, but it can be more significant in other cases. In particular there are several kinds of variables that
allow initialization but not assignment:

• arrays

• references

• const variables

• class-type variables that disable assignment (e.g. streams)

Another case where initialization followed by assignment is problematic is for types where both initialization and
assignment perform nontrivial operations – we lose efficiency by doing both when we only need initialization.

C++ provides two mechanisms for initializing a member variable:

• directly in the declaration of the variable, similar to initializing a non-member variable

• through a member-initializer list

A member-initializer list is syntax specific to a constructor. It is a list of initializations that appear between a colon
symbol and the constructor body:

class Triangle {
double a;
double b;
double c;

public:
// good constructor implementation
Triangle(double a_in, double b_in, double c_in)
: a(a_in), b(b_in), c(c_in) {}

};

16.3. Constructors 82

Programming and Data Structures, Release 0.3

An individual initialization consists of a member-variable name, followed by an initialization expression enclosed by
parentheses (or curly braces). The constructor above initializes the member a to the value of a_in, b to the value of
b_in, and c to the value of c_in. The constructor body is empty, since it has no further work to do.

If a member is initialized in both its declaration and a member-initializer list, the latter takes precedence, so that the
initialization in the member declaration is ignored.

16.4 Default Initialization and Default Constructors

Every object in C++ is initialized upon creation, whether the object is of class type or not. If no explicit initialization
is provided, it undergoes default initialization. Default initialization does the following:

• Objects of atomic type (e.g. int, double, pointers) are default initialized by doing nothing. This means they
retain whatever value was already there in memory. Put another way, atomic objects have undefined values when
they are default initialized.

• An array is default initialized by in turn default initializing its elements. Thus, an array of atomic objects is
default initialized by doing nothing, resulting in undefined element values.

• A class-type object is default initialized by calling the default constructor, which is the constructor that takes no
arguments. If no such constructor exists, or if it is inaccessible (e.g. it is private), a compile-time error results.

An array of class-type objects is default initialized by calling the default constructor on each element. Thus, the
element type must have an accessible default constructor in order to create an array of that type.

Within a class, if a member variable is neither initialized at declaration nor in the member-initializer list of a constructor,
it is default initialized.

The default constructor is so named because it is invoked in default initialization, and it takes no arguments. We can
define a default constructor for Triangle as follows, making the design decision to initialize the object as a 1x1x1
equilateral triangle:

class Triangle {
double a;
double b;
double c;

public:
// default constructor
Triangle()
: a(1), b(1), c(1) {}

// non-default constructor
Triangle(double a_in, double b_in, double c_in)
: a(a_in), b(b_in), c(c_in) {}

};

A class can have multiple constructors. This is a form of function overloading, which we will return to in the future. The
compiler determines which compiler to invoke based on the arguments that are provided when creating a Triangle
object:

Triangle t1; // 1x1x1 -- calls zero-argument (default) constructor
Triangle t2(3, 4, 5); // 3x4x5 -- calls three-argument constructor

16.4. Default Initialization and Default Constructors 83

https://en.cppreference.com/w/cpp/language/default_initialization

Programming and Data Structures, Release 0.3

16.4.1 Implicit Default Constructor

If a class declares no constructors at all, the compiler provides an implicit default constructor. The behavior of this
constructor is as if it were empty, so that it default initializes each member variable:

struct Person {
string name;
int age;
bool is_ninja;
// implicit default constructor
// Person() {} // default initializes each member variable

};

int main() {
Person elise; // calls implicit default constructor
cout << elise.name; // prints nothing: default ctor for string makes it empty
cout << elise.age; // prints undefined value
cout << elise.is_ninja; // prints undefined value

};

If a class declares any constructors whatsoever, no implicit default constructor is provided:

class Triangle {
double a;
double b;
double c;

public:
Triangle(double a_in, double b_in, double c_in);

double perimeter() const {
return a + b + c;

}

void scale(double s) {
a *= s;
b *= s;
c *= s;

}
};

int main() {
Triangle t1; // ERROR: no implicit or explicit default constructor

}

In this case, if we want our type to have a default constructor, we have to explicitly write one:

class Triangle {
double a;
double b;
double c;

public:
// explicit default constructor

(continues on next page)

16.4. Default Initialization and Default Constructors 84

Programming and Data Structures, Release 0.3

(continued from previous page)

Triangle()
: a(1), b(1), c(1) {}

// non-default constructor
Triangle(double a_in, double b_in, double c_in)
: a(a_in), b(b_in), c(c_in) {}

double perimeter() const {
return a + b + c;

}

void scale(double s) {
a *= s;
b *= s;
c *= s;

}
};

int main() {
Triangle t1; // OK: explicit default constructor

}

16.5 Get and Set Functions

With C++ classes, member variables are usually declared private, since they are implementation details. However,
many C++ ADTs provide a means of accessing the abstract data through get and set functions (also called getters and
setters or accessor functions). These are provided as part of the interface as an abstraction over the underlying data.
The following are examples for Triangle:

class Triangle {
double a;
double b;
double c;

public:
// EFFECTS: Returns side a of the triangle.
double get_a() const {
return a;

}

// REQUIRES: a_in > 0 && a_in < get_b() + get_c()
// MODIFIES: *this
// EFFECTS: Sets side a of the triangle to a_in.
void set_a(double a_in) {
a = a_in;

}
};

If the implementation changes, the interface can remain the same, so that outside code is unaffected:

16.5. Get and Set Functions 85

Programming and Data Structures, Release 0.3

class Triangle {
double side1; // new names
double side2;
double side3;

public:
// EFFECTS: Returns side a of the triangle.
double get_a() const { // same interface
return side1; // different implementation

}

// REQUIRES: a_in > 0 && a_in < get_b() + get_c()
// MODIFIES: *this
// EFFECTS: Sets side a of the triangle to a_in.
void set_a(double a_in) {

side1 = a_in;
}

};

With a set function, we’ve introduced a new location from which the representation can be modified. We need to
ensure that the representation invariants are still met. We can do so by writing and using a private function to check
the invariants:

class Triangle {
double a;
double b;
double c;

public:
Triangle(double a_in, double b_in, double c_in)
: a(a_in), b(b_in), c(c_in) {
check_invariants();

}

void set_a(double a_in) {
a = a_in;
check_invariants();

}

private:
void check_invariants() {

assert(0 < a && 0 < b && 0 < c);
assert(a + b > c && a + c > b && b + c > a);

}
}

It is good practice to check the invariants anywhere the representation can be modified. Here, we have done so in both
the constructor and in the set function.

16.5. Get and Set Functions 86

Programming and Data Structures, Release 0.3

16.6 Information Hiding

Good abstraction design uses encapsulation, which groups together both the data and functions of an ADT. With a
class, we get encapsulation by defining both member variables and member functions.

A proper abstraction also provides information hiding, which separates interface from implementation. Access speci-
fiers such as private allow us to prevent the outside world from accessing implementation details.

We can further hide information from the sight of the users of an ADT by physically separating the code for the interface
from the code for the implementation. The standard mechanism to do so in C++ is to place declarations in header files
and definitions in source files. With a class, we place a class definition that only contains member declarations in the
header file:

// Triangle.hpp

// A class that represents a triangle ADT.
class Triangle {
public:
// EFFECTS: Initializes this to a 1x1x1 triangle.
Triangle();

// EFFECTS: Initializes this with the given side lengths.
Triangle(double a_in, double b_in, double c_in);

// EFFECTS: Returns the perimeter of this triangle.
double perimeter() const;

// REQUIRES: s > 0
// MODIFIES: *this
// EFFECTS: Scales the sides of this triangle by the factor s.
void scale(double s);

private:
double a;
double b;
double c;
// INVARIANTS:
// positive side lengths: a > 0 && b > 0 && c > 0
// triangle inequality: a + b > c && a + c > b && b + c > a

};

It is also generally preferable to declare the public members of the class before private members, so that users do not
have to skip over implementation details to find the public interface.

We then define the constructors and member functions outside of the class definition, in the corresponding source file.
In order to define a member function outside of a class, we need two things:

1) A declaration of the function within the class, so that the compiler (and other programmers) can tell that the
member exists.

2) Syntax in the definition that tells the compiler that the function is a member of the associated class and not a
top-level function.

The latter is accomplished by prefixing the member name with the class name, followed by the scope-resolution oper-
ator:

16.6. Information Hiding 87

Programming and Data Structures, Release 0.3

// Triangle.cpp
#include "Triangle.hpp"

Triangle::Triangle()
: a(1), b(1), c(1) {}

Triangle::Triangle(double a_in, double b_in, double c_in)
: a(a_in), b(b_in), c(c_in) {}

double Triangle::perimeter() const {
return a + b + c;

}

void Triangle::scale(double s) {
a *= s;
b *= s;
c *= s;

}

This tells the compiler that the two constructors, as well as the perimeter() and scale() functions, are members of
the Triangle class.

16.7 Testing a C++ ADT

We test a C++ ADT by writing test cases that live outside of the ADT itself. C++ forces us to respect the interface,
since the implementation details are private:

// Triangle_tests.cpp
#include "Triangle.hpp"
#include "unit_test_framework.hpp"

TEST(test_triangle_basic) {
Triangle t(3, 4, 5);
ASSERT_EQUAL(t.area(), 6);
ASSERT_EQUAL(t.get_a(), 3); // must use get and set functions
t.set_a(4);
ASSERT_EQUAL(t.get_a(), 4);

}

TEST_MAIN()

16.7. Testing a C++ ADT 88

Programming and Data Structures, Release 0.3

16.8 Member-Initialization Order

Member variables are always initialized in the order in which they are declared in the class. This is the case regardless
if some members are initialized at the declaration point and others are not, or if a constructor’s member-initializer list
is out of order:

class Triangle {
double a;
double b;
double c;

public:
Triangle(double a_in, double b_in, double c_in)
: b(b_in), c(c_in), a(a_in) { // this ordering is ignored

}
};

Here, a is initialized first to a_in, then b to b_in, then c to c_in; the ordering in the member-initializer list is ignored.
Some compilers will generate a warning if the order differs between the member declarations and the member-initializer
list:

$ g++ --std=c++17 -Wall Triangle.cpp
Triangle.cpp:8:16: warning: field 'c' will be initialized after field 'a'

[-Wreorder]
: b(b_in), c(c_in), a(a_in) { // this ordering is ignored

16.9 Delegating Constructors

When a class has multiple constructors, it can be useful to invoke one constructor from another. This allows us to avoid
code duplication, and it also makes our code more maintainable by reducing the number of places where we hardcode
implementation details.

In order to delegate to another constructor, we must do so in the member-initializer list. The member-initializer list
must consist solely of the call to the other constructor:

class Triangle {
double a;
double b;
double c;

public:
// EFFECTS: Initializes this to be an equilateral triangle with
// the given side length.
Triangle(double side_in)
: Triangle(side_in, side_in, side_in) {} // delegate to 3-argument constructor

Triangle(double a_in, double b_in, double c_in)
: a(a_in), b(b_in), c(c_in) {}

};

The delegation must be in the member-initializer list. If we invoke a different constructor from within the body, it does
not do delegation; rather, it creates a new, temporary object and then throws it away:

16.8. Member-Initialization Order 89

Programming and Data Structures, Release 0.3

Triangle(double side_in) { // default initializes members
Triangle(side_in, side_in, side_in); // creates a new Triangle object that

// lives in the activation record for
// this constructor

}

16.9. Delegating Constructors 90

CHAPTER

SEVENTEEN

DERIVED CLASSES AND INHERITANCE

In addition to encapsulation and information hiding, C++ classes provide two features that are fundamental to object-
oriented programming:

• Inheritance: the ability for a class to reuse the interface or functionality of another class.

• Subtype polymorphism: the ability to use an object of a more specific type where an object of a more general
type is expected.

We will discuss inheritance today, deferring subtype polymorphism until next time.

To motivate the concept of inheritance, consider the following definitions of Chicken and Duck ADTs:

class Chicken {
public:
Chicken(const string &name_in)

: age(0), name(name_in),
roads_crossed(0) {

cout << "Chicken ctor" << endl;
}

string get_name() const {
return name;

}

int get_age() const {
return age;

}

void cross_road() {
++roads_crossed;

}

void talk() const {
cout << "bawwk" << endl;

}

private:
int age;
string name;
int roads_crossed;

};

class Duck {
public:
Duck(const string &name_in)
: age(0), name(name_in),
num_ducklings(0) {

cout << "Duck ctor" << endl;
}

string get_name const {
return name;

}

int get_age() const {
return age;

}

void have_babies() {
num_ducklings += 7;

}

void talk() const {
cout << "quack" << endl;

}

private:
int age;
string name;
int num_ducklings;

};

91

Programming and Data Structures, Release 0.3

The two ADTs are nearly identical – both have age and namemember variables, with their corresponding get functions,
and both have a talk() member function that makes the appropriate chicken or duck sound. In terms of differences,
chickens tend to cross roads (since they don’t fly very well), so we keep track of how often they do that. On the other
hand, ducks are often accompanied by their ducklings, so we keep track of how many they have.

Intuitively, it makes sense for Chicken and Duck to share a lot of functionality, since chickens and ducks are both types
of birds.

Bird

Chicken Duck
is

a is a

Figure 17.1: Relationship between different kinds of birds.

This “is-a” relationship, where a Chicken is a Bird and a Duck is also a Bird, can be encoded with inheritance. We
write Bird as a base class, then write Chicken and Duck as classes that inherit or derive from Bird. We place the
common functionality in Bird, which then gets inherited by the derived classes.

class Bird {
public:
Bird(const string &name_in)
: age(0), name(name_in) {
cout << "Bird ctor" << endl;

}

string get_name() const {
return name;

}

int get_age() const {
return age;

}

void have_birthday() {
++age;

}

void talk() const {
cout << "tweet" << endl;

}

private:
int age;
string name;

};

Here, all birds have a name and an age, and the generic sound a bird makes is “tweet”.

For more a more specific kind of bird, we obtain the functionality of the base class by deriving from it:

92

Programming and Data Structures, Release 0.3

class Chicken : public Bird {
...

};

The syntax for deriving from a base class is to put a colon after the name of the derived class, then the public keyword,
then the name of the base class. This results in public inheritance, where it is part of the interface of Chicken that
it derives from Bird. Without the public keyword, it would be private inheritance1, where it is an implementation
detail and not part of the interface that Chicken derives from Bird.

Now that Chicken derives from Bird, it inherits the functionality of the Bird class, and the public interface of Bird
is also supported by Chicken:

Chicken c("Myrtle");
c.have_birthday();
cout << c.get_name() << " " << c.get_age(); // prints Myrtle 1

Functionality that is specific to a particular kind of bird goes in the class for that bird:

class Chicken : public Bird {
public:

...

void cross_road() {
++roads_crossed;

}

void talk() const {
cout << "bawwk" << endl;

}

private:
int roads_crossed;

};

Here, we have the additional data member roads_crossed; name and age are inherited from Bird. (They are not
directly accessible from the Chicken class, however, since they are private. We will come back to this later.) Figure
17.2 illustrates the layout of Bird and Chicken in memory.

int main() {
Bird big_bird("Big Bird");
Chicken myrtle("Myrtle");

}

The memory of Chicken actually consists of a Bird piece, plus the additional Chicken members. Thus, the data
members defined by Bird are also included in a Chicken.

In order to properly initialize a derived-class object, its constructor must ensure that its base-class subobject is also
appropriately initialized. The base class may have private member variables, which cannot be accessed from the derived
class, so the derived class does not initialize the inherited members directly. Instead, it invokes a base-class constructor
in the member-initializer list of its own constructors:

1 As with member accessibility, the default inheritance is public if the struct keyword is used to define a class type and private if the class
keyword is used. With private inheritance, the (non-private) inherited members are private to the derived class, so that outside code may not access
those members. There is also protected inheritance, where classes that derive from the derived class can access the (non-private) inherited members
of the derived class, but outside code cannot.

93

Programming and Data Structures, Release 0.3

Stack

Bird

0x1018 0 age

0x1000 "Big Bird" name

main

big_bird

Chicken

0x1038 0 age

0x103c 0 roads_crossed

0x1020 "Myrtle" name
myrtleBird

Figure 17.2: The layout of a derived-class object contains a subset that matches the layout of a base-class object.

class Chicken : public Bird {
public:

Chicken(const string &name_in)
: Bird(name_in), roads_crossed(0) {
cout << "Chicken ctor" << endl;

}

...

private:
int roads_crossed;

};

In C++, a derived-class constructor always invokes a constructor for the base class. If an explicit invocation does not
appear in the member-initializer list, there is an implicit call to the default constructor. If the base class has no default
constructor, an error results:

class Chicken : public Bird {
public:

Chicken(const string &name_in)
: roads_crossed(0) { // ERROR: implicit call to Bird(), which doesn't exist
cout << "Chicken ctor" << endl;

}

...
};

For completeness, the following is an implementation of Duck as a derived class of Bird:

class Duck : public Bird {
public:
Duck(const string &name_in)

(continues on next page)

94

Programming and Data Structures, Release 0.3

(continued from previous page)

: Bird(name_in), num_ducklings(0) {
cout << "Duck ctor" << endl;

}

void have_babies() {
num_ducklings += 7;

}

void talk() const {
cout << "quack" << endl;

}

private:
int num_ducklings;

};

By writing Bird and deriving from it in both Chicken and Duck, we have avoided duplication of the shared function-
ality.

17.1 Ordering of Constructors and Destructors

We have already seen that in most cases, a constructor is invoked when a class-type object is created. Similarly, a
destructor is invoked when a class-type object’s lifetime is over. For a local variable, this is when the variable goes out
of scope. The following illustrates an example:

class Foo {
public:

Foo() { // constructor
cout << "Foo ctor" << endl;

}

~Foo() { // destructor
cout << "Foo dtor" << endl;

}
};

void func() {
Foo x;

}

int main() {
cout << "before call" << endl;
func();
cout << "after call" << endl;

}

The class Foo has a custom destructor, written as ~Foo(), which runs when a Foo object is dying. Here, we just have
both the constructor and destructor print messages to standard out. The following is printed when the code is run:

before call
Foo ctor

(continues on next page)

17.1. Ordering of Constructors and Destructors 95

Programming and Data Structures, Release 0.3

(continued from previous page)

Foo dtor
after call

We will cover destructors in more detail later in the course. For now, we concern ourselves solely with the order in
which constructors and destructors execute when we have derived classes.

When there are multiple objects that are constructed and destructed, C++ follows a “socks-and-shoes” ordering: when
we put on socks and shoes in the morning, we put on socks first, then our shoes. In the evening, however, when we take
them off, we do so in the reverse order: first our shoes, then our socks. In the case of a derived class, C++ will always
construct the base-class subobject before initializing the derived-class pieces. Destruction is in the reverse order: first
the derived-class destructor runs, then the base-class one. The following illustrates this order:

class Bird {
public:
Bird(const string &name_in)
: age(0), name(name_in) {
cout << "Bird ctor" << endl;

}

~Bird() {
cout << "Bird dtor" << endl;

}

...
};

class Chicken : public Bird {
public:

Chicken(const string &name_in)
: Bird(name_in), roads_crossed(0) {
cout << "Chicken ctor" << endl;

}

~Chicken() {
cout << "Chicken dtor" << endl;

}

...
};

int main() {
cout << "construction:" << endl;
Chicken myrtle("Myrtle");
cout << "destruction:" << endl;

}

The following results from running the code:

construction:
Bird ctor
Chicken ctor
destruction:
Chicken dtor

(continues on next page)

17.1. Ordering of Constructors and Destructors 96

Programming and Data Structures, Release 0.3

(continued from previous page)

Bird dtor

When creating a Chicken object, the invocation of the Bird constructor is the first thing that happens in the Chicken
constructor. This is true regardless of whether or not an explicit call to the Bird constructor appears, and regardless
of ordering of the member-initializer list. Then the rest of the Chicken constructor runs. When a Chicken object is
dying, first the code in the Chicken destructor runs. Then the code in the Bird destructor automatically runs. (It is
generally erroneous to invoke the base-class destructor explicitly, since the compiler always does so implicitly.)

The following code creates both a Chicken and a Duck object:

int main() {
cout << "construction:" << endl;
Chicken myrtle("Myrtle");
Duck donald("Donald");
cout << "destruction:" << endl;

}

Assuming that Duck has a destructor that prints out "Duck dtor", the code prints the following:

construction:
Bird ctor
Chicken ctor
Bird ctor
Duck ctor
destruction:
Duck dtor
Bird dtor
Chicken dtor
Bird dtor

We see the same ordering in Duck construction and destruction. Furthermore, we see that because myrtle is con-
structed before donald, it is destructed after donald – socks-and-shoes ordering here as well.

17.2 Name Lookup and Hiding

When a member access is applied to an object, the compiler follows a specific process to look up the given name:

• The compiler starts by looking for a member with that name in the compile-time or static type of the object. (We
will discuss static and dynamic types next time.)

• If no member with that name is found, the compiler repeats the process on the base class of the given type. If
the type has no base class, a compiler error is generated.

• If a member with the given name is found, the compiler then checks whether or not the member is accessible and
whether the member can be used in the given context.2 If not, a compiler error is generated – the lookup process
does not proceed further.

As an example, consider the following member accesses:

Chicken myrtle("Myrtle");
myrtle.get_age();

(continues on next page)

2 If name lookup finds a set of overloaded functions within the same class, the compiler performs overload resolution to determine which overload
is the most appropriate. We will discuss function overloading in more detail next time.

17.2. Name Lookup and Hiding 97

https://en.cppreference.com/w/cpp/language/overload_resolution

Programming and Data Structures, Release 0.3

(continued from previous page)

myrtle.talk();
myrtle.age;
myrtle.undefined;

• For myrtle.get_age(), the compiler first looks for a get_age member defined in the Chicken class. Since
Chicken does not define such a member, the compiler looks for a get_agemember in its base Bird class. There
is indeed a get_agemember in Bird, so the compiler then checks that the member is accessible and is a function
that can be called with no arguments. These checks succeed, so the lookup process terminates successfully.

• For myrtle.talk(), the compiler looks for a talk member in Chicken. There is one, so it then checks to
make sure it is accessible and is a function that can be called with no arguments. This succeeds, and at runtime,
it is Chicken::talk() that is called. The function Bird::talk() is hidden, since the name lookup process
never gets to it.

• For myrtle.age, the compiler looks for an age member in Chicken. There is none, so the compiler looks in
Bird. There is such a member, so the compiler checks whether it is accessible from the given context. The
member is private, so this check fails, and the compiler reports an error.

• For myrtle.undefined, the compiler looks for an undefined member in Chicken. There is none, so the
compiler looks in Bird. There is no such member, and Bird has no base class, so the compiler reports an error.

As another example, consider the following code:

class Base {
public:
int x;
void foo(const string &s);

};

class Derived : public Base {
public:
void x();
void foo(int i);

};

int main() {
Derived d;
int a = d.x;
d.foo("hello");

}

When looking up d.x, the compiler finds a member x in Derived. However, it is a member function, which cannot be
assigned to an int. Thus, the compiler reports an error – it does not consider the hidden x that is defined in Base.

Similarly, when looking up d.foo, the compiler finds a member foo in Derived. Though it is a function, it cannot
be called with a string literal, so the compiler reports an error. Again, the compiler does not consider the foo that is
defined in Base; that member is hidden by the foo defined in Derived.

To summarize, C++ does not consider the context in which a member is used until after its finds a member of the given
name. This is in contrast to some other languages, which consider context in the lookup process itself.

On occasion, we wish to access a hidden member rather than the member that hides it. The most common case is when
a derived-class version of a function calls the base-class version as part of its functionality. The following illustrates
this in Chicken:

17.2. Name Lookup and Hiding 98

Programming and Data Structures, Release 0.3

class Chicken : public Bird {
public:

...

void talk() const {
if (age >= 1) { // ERROR: age is private in Bird
cout << "bawwk" << endl;

} else {
// baby chicks make more of a tweeting rather than clucking noise
Bird::talk(); // call Bird's version of talk()

}
}

};

By using the scope-resolution operator, we are specifically asking for the Bird version of talk(), enabling access to
it even though it is hidden.3

The code above does have a problem: it accesses the age member of Bird, which, though it is not hidden, is private
and so not accessible to Chicken. There are two solutions to this problem:

• We can declare age to be protected, which allows derived classes of Bird to access the member but not the
outside world.

• We can use the public get_age() function instead.

The former strategy is not desirable; since the member variable age is an implementation detail, making it protected
exposes implementation details to the derived classes. Instead, we should use a get function to abstract the implemen-
tation detail. We could choose to make such a function protected, so that it is part of the interface that derived classes
have access to but not the outside world. For age, we already have a public get function, so we can just use that:

class Chicken : public Bird {
public:

...

void talk() const {
if (get_age() >= 1) {
cout << "bawwk" << endl;

} else {
// baby chicks make more of a tweeting rather than clucking noise
Bird::talk(); // call Bird's version of talk()

}
}

};

3 Interestingly, we can apply the scope-resolution operator as part of dot or arrow syntax in order to access the base-class version: myrtle.
Bird::talk(). However, this is very uncommon in real code, and we will not do it at all in this course.

17.2. Name Lookup and Hiding 99

CHAPTER

EIGHTEEN

POLYMORPHISM

The word polymorphism literally means “many forms.” In the context of programming, polymorphism refers to the
ability of a piece of code to behave differently depending on the context in which it is used. Appropriately, there are
several forms of polymorphism:

• ad hoc polymorphism, which refers to function overloading

• parametric polymorphism in the form of templates

• subtype polymorphism, which allows a derived-class object to be used where a base-class object is expected

The unqualified term “polymorphism” usually refers to subtype polymorphism.

We proceed to discuss ad hoc and subtype polymorphism, deferring parametric polymorphism until later.

18.1 Function Overloading

Ad hoc polymorphism refers to function overloading, which is the ability to use a single name to refer to many different
functions in a single scope. C++ allows both top-level functions and member functions to be overloaded. The following
is an example of overloaded member functions:

class Base {
public:
void foo(int a);
int foo(string b);

};

int main() {
Base b;
b.foo(42);
b.foo("test");

}

When we invoke an overloaded function, the compiler resolves the function call by comparing the types of the arguments
to the parameters of the candidate functions and finding the best match. The call b.foo(42) calls the member function
foo() with parameter int, since 42 is an int. The call b.foo("test") calls the function with parameter string –
"test" actually has type const char *, but a string parameter is a better match for a const char * than int.

In C++, functions can only be overloaded when defined within the same scope. If functions of the same name are
defined in a different scope, then those that are defined in a closer scope hide the functions defined in a further scope:

class Derived : public Base {
public:

(continues on next page)

100

Programming and Data Structures, Release 0.3

(continued from previous page)

int foo(int a);
double foo(double b);

};

int main() {
Derived d;
d.foo("test"); // ERROR

}

When handling the member access d.foo, under the name-lookup process we saw last time, the compiler finds the
name foo in Derived. It then applies function-overload resolution; however, none of the functions with name foo can
be invoked on a const char *, resulting in a compile error. The functions inherited from Base are not considered,
since they were defined in a different scope.

Function overloading requires the signatures of the functions to differ, so that overload resolution can choose the over-
load with the most appropriate signature. Here, “signature” refers to the function name and parameter types – the return
type is not part of the signature and is not considered in overload resolution.

class Person {
public:
void greet();
void greet(int x); // OK
void greet(string x); // OK
void greet(int x, string s); // OK
void greet(string s, int x); // OK
bool greet(); // ERROR: signature the same as the first overload
void greet() const; // OK: implicit this parameter different

};

For member functions, the const keyword after the parameter list is part of the signature – it changes the implicit this
parameter from being a pointer to non-const to a pointer to const. Thus, it is valid for two member-function overloads
to differ solely in whether or not they are declared as const.

18.2 Subtype Polymorphism

Subtype polymorphism allows a derived-class object to be used where a base-class one is expected. In order for this to
work, however, we need indirection. Consider what happens if we directly copy a Chicken object into a Bird:

int main() {
Chicken chicken("Myrtle");
// ...
Bird bird = chicken;

}

While C++ allows this, the value of a Chicken does not necessarily fit into a Bird object, since a Chicken has more
member variables than a Bird. The copy above results in object slicing – the members defined by Bird are copied,
but the Chicken ones are not, as illustrated in Figure 18.1.

To avoid slicing, we need indirection through a reference or a pointer, so that we avoid making a copy:

Bird &bird_ref = chicken;
Bird *bird_ptr = &chicken;

18.2. Subtype Polymorphism 101

https://en.wikipedia.org/wiki/Object_slicing

Programming and Data Structures, Release 0.3

Stack

Bird

0x1018 3 age

0x1000 "Myrtle" name

main

bird

Chicken

0x1038 3 age

0x103c 238 roads_crossed

0x1020 "Myrtle" name
chickenBird

Figure 18.1: Object slicing copies only the members defined by the base class.

The above initializes bird_ref as an alias for the chicken object. Similarly, bird_ptr is initialized to hold the
address of the chicken object. In either case, a copy is avoided.

C++ allows a reference or pointer of a base type to refer to an object of a derived type. It allows implicit upcasts, which
are conversions that go upward in the inheritance hierarchy, such as from Chicken to Bird, as in the examples above.
On the other hand, implicit downcasts are prohibited:

Chicken &chicken_ref = bird_ref; // ERROR: implicit downcast
Chicken *chicken_ptr = bird_ptr; // ERROR: implicit downcast

The implicit downcasts are prohibited by C++ even though bird_ref and bird_ptr actually refer to Chicken objects.
In the general case, they can refer to objects that aren’t of Chicken type, such as Duck or just plain Bird objects. Since
the conversions may be unsafe, they are disallowed by the C++ standard.

While implicit downcasts are prohibited, we can do explicit downcasts with static_cast:

Chicken &chicken_ref = static_cast<Chicken &>(bird_ref);
Chicken *chicken_ptr = static_cast<Chicken *>(bird_ptr);

These conversions are unchecked at runtime, so we need to be certain from the code that the underlying object is a
Chicken.

In order to be able to bind a base-class reference or pointer to a derived-class object, the inheritance relationship must
be accessible. From outside the classes, this means that the derived class must publicly inherit from the derived class.
Otherwise, the outside world is not allowed to take advantage of the inheritance relationship. Consider this example:

class A {
};

class B : A { // default is private when using the class keyword
};

int main() {
B b;

(continues on next page)

18.2. Subtype Polymorphism 102

Programming and Data Structures, Release 0.3

(continued from previous page)

A *a_ptr = &b; // ERROR: inheritance relationship is private
}

This results in a compiler error:

main.cpp:9:16: error: cannot cast 'B' to its private base class 'A'
A *a_ptr = &b; // ERROR: inheritance relationship is private

^
main.cpp:4:13: note: implicitly declared private here
class B : A { // default is private when using the class keyword

^
1 error generated.

18.3 Static and Dynamic Binding

Subtype polymorphism allows us to pass a derived-class object to a function that expects a base-class object:

void Image_init(Image* img, istream& is);

int main() {
Image *image = /* ... */;
istringstream input(/* ... */);
Image_init(image, input);

}

Here, we have passed an istringstream object to a function that expects an istream. Extracting from the stream
will use the functionality that istringstream defines for extraction.

Another common use case is to have a container of base-class pointers, each of which points to different derived-class
objects:

void all_talk(Bird *birds[], int length) {
for (int i = 0; i < length; ++i) {
array[i]->talk();

}
}

int main() {
Chicken c1 = /* ... */;
Duck d = /* ... */;
Chicken c2 = /* ... */;
Bird *array[] = { &c1, &d, &c2 };
all_talk(array, 3);

}

Unfortunately, given the way we defined the talk() member function of Bird last time, this code will not use the
derived-class versions of the function. Instead, all three calls to talk() will use the Bird version:

$./main.exe
tweet
tweet
tweet

18.3. Static and Dynamic Binding 103

Programming and Data Structures, Release 0.3

In the invocation array[i]->talk(), the declared type of the receiver, the object that is receiving the member-
function call, is different from the actual runtime type. The declared or static type is Bird, while the runtime or
dynamic type is Chicken when i == 0. This disparity can only exist when we have indirection, either through a
reference or a pointer.

For a particular member function, C++ gives us the option of either static binding where the compiler determines which
function to call based on the static type of the receiver, or dynamic binding, where the program also takes the dynamic
type into account. The default is static binding, since it is more efficient and can be done entirely at compile time.

In order to get dynamic binding instead, we need to declare the member function as virtual in the base class:

class Bird {
...
virtual void talk() const {
cout << "tweet" << endl;

}
};

Now when we call the all_talk() function above, the compiler will use the dynamic type of the receiver in the
invocation array[i]->talk():

$./main.exe
bawwk
quack
bawwk

The virtual keyword is necessary in the base class, but optional in the derived classes. It can only be applied to the
declaration within a class; if the function is subsequently defined outside of the class, the definition cannot include the
virtual keyword:

class Bird {
...
virtual void talk() const;

};

void Bird::talk() const {
cout << "bawwk" << endl;

}

18.4 dynamic_cast

With dynamic binding, the only change we need to make to our code is to add the virtual keyword when declaring
the base-class member function. No changes are required to the actual function calls (e.g. in all_talk()).

Consider an alternative to dynamic binding, where we manually check the runtime type of an object to call the appro-
priate function. In C++, a dynamic_cast conversion checks the dynamic type of the receiver object:

Chicken chicken("Myrtle");
Bird *b_ptr = &chicken;
Chicken *c_ptr = dynamic_cast<Chicken *>(b_ptr);
if (c_ptr) { // check for null
// do something chicken-specific

}

18.4. dynamic_cast 104

Programming and Data Structures, Release 0.3

If the dynamic type is not actually a Chicken, the conversion results in a null pointer. Otherwise, it results in the
address of the Chicken object. Thus, we can check for null after the conversion to determine if it succeeded.

There are two significant issues with dynamic_cast:

1. It generally results in messy and unmaintainable code. For instance, we would need to modify all_talk() as
follows to use dynamic_cast rather than dynamic binding:

void all_talk(Bird * birds[], int length) {
for (int i = 0; i < length; ++i) {
Chicken *c_ptr = dynamic_cast<Chicken*>(birds[i]);
if (c_ptr) {
c_ptr->talk();

}
Duck *d_ptr = dynamic_cast<Duck*>(birds[i]);
if (d_ptr) {
d_ptr->talk();

}
Eagle *e_ptr = dynamic_cast<Eagle*>(birds[i]);
if (e_ptr) {
e_ptr->talk();

}
...

}
}

We would need a branch for every derived type of Bird, and we would have to add a new branch every time we
wrote a new derived class. The code also takes time that is linear in the number of derived classes.

2. In C++, dynamic_cast can only be applied to classes that are polymorphic, meaning that they define at least
one virtual member function. Thus, we need to use virtual one way or another.

Code that uses dynamic_cast is usually considered to be poorly written. Almost universally, it can be rewritten to use
dynamic binding instead.

18.5 Member Lookup Revisited

We have already seen that when a member is accessed on an object, the compiler first looks in the object’s class for a
member of that name before proceeding to its base class. With indirection, the following is the full lookup process:

1. The compiler looks up the member in the static type of the receiver object, using the lookup process we discussed
before (starting in the class itself, then looking in the base class if necessary). It is an error if no member of the
given name is found in the static type or its base types.

2. If the member found is an overloaded function, then the arguments of the function call are used to determine
which overload is called.

3. If the member is a variable or non-virtual function (including static member functions, which we will see later),
the access is statically bound at compile time.

4. If the member is a virtual function, the access uses dynamic binding. At runtime, the program will look for a
function of the same signature, starting at the dynamic type of the receiver, then proceeding to its base type if
necessary.

As indicated above, dynamic binding requires two conditions to be met to use the derived-class version of a function:

• The member function found at compile time using the static type must be virtual.

18.5. Member Lookup Revisited 105

Programming and Data Structures, Release 0.3

• The derived-class function must have the same signature as the function found at compile time.

When these conditions are met, the derived-class function overrides the base-class one – it will be used instead of the
base-class function when the dynamic type of the receiver is the derived class. If these conditions are not met, the
derived-class function hides the base-class one – it will only be used if the static type of the receiver is the derived
class.

As an example, consider the following class hierarchy:

class Top {
public:
int f1() const {
return 1;

}

virtual int f2() const {
return 2;

}
};

class Middle : public Top {
public:
int f1() const {
return 3;

}

virtual int f2() const {
return 4;

}
};

class Bottom : public Middle {
public:
int f1() const {
return 5;

}

virtual int f2() const {
return 6;

}
};

Each class has a non-virtual f1() member function; since the function is non-virtual, the derived-class versions hide
the ones in the base classes. The f2() function is virtual, so the derived-class ones override the base-class versions.

The following are some examples of invoking these functions:

int main() {
Top top;
Middle mid;
Bottom bot;
Top *top_ptr = ⊥
Middle *mid_ptr = ∣

cout << top.f2() << endl; // prints 2
(continues on next page)

18.5. Member Lookup Revisited 106

Programming and Data Structures, Release 0.3

(continued from previous page)

cout << mid.f1() << endl; // prints 3
cout << top_ptr->f1() << endl; // prints 1
cout << top_ptr->f2() << endl; // prints 6
cout << mid_ptr->f2() << endl; // prints 4
mid_ptr = ⊥
cout << mid_ptr->f1() << endl; // prints 3
cout << mid_ptr->f2() << endl; // prints 6

}

We discuss each call in turn:

• There is no indirection in the calls top.f1() and mid.f1(), so there is no difference between the static and
dynamic types of the receivers. The former calls the Top version of f1(), resulting in 2, while the latter calls
the Middle version, producing 3.

• The static type of the receiver in top_ptr->f1() and top_ptr->f2() is Top, while the dynamic type is
Bottom. Since f1() is non-virtual, static binding is used, resulting in 1. On the other hand, f2() is virtual, so
dynamic binding uses the Bottom version, producing 6.

• In the first call to mid_ptr->f2(), both the static and dynamic type of the receiver is Middle, so Middle‘s
version is used regardless of whether f2() is virtual. The result is 4.

• The assignment mid_ptr = &bot changes the dynamic type of the receiver to Bottom in calls on mid_ptr.
The static type remains Middle, so the call mid_ptr->f1() results in 3. The second call to mid_ptr->f2(),
however, uses dynamic binding, so the Bottom version of f2() is called, resulting in 6.

18.6 The override Keyword

A common mistake when attempting to override a function is to inadvertently change the signature, so that the derived-
class version hides rather than overrides the base-class one. The following is an example:

class Chicken : public Bird {
...
virtual void talk() {

cout << "bawwk" << endl;
}

}

int main() {
Chicken chicken("Myrtle");
Bird *b_ptr = &chicken;
b_ptr->talk();

}

This code compiles, but it prints tweet when run. Under the lookup process above, the program looks for an override
of Bird::talk() at runtime. However, no such override exists – Chicken::talk() has a different signature, since
it is not const. Thus, the dynamic lookup finds Bird::talk() and calls it instead.

Rather than having the code compile and then behave incorrectly, we can ask the compiler to detect bugs like this with
the override keyword. Specifically, we can place the override keyword after the signature of a member function
to let the compiler know we intended to override a base-class member function. If the derived-class function doesn’t
actually do so, the compiler will report this:

18.6. The override Keyword 107

Programming and Data Structures, Release 0.3

class Chicken : public Bird {
...
void talk() override {

cout << "bawwk" << endl;
}

}

Here, we have removed the virtual keyword, since it is already implied by override – only a virtual function can
be overridden, and the “virtualness” is inherited from the base class. Since we are missing the const, the compiler
reports the following:

main.cpp:39:15: error: non-virtual member function marked 'override' hides
virtual member function

void talk() override {
^

main.cpp:20:16: note: hidden overloaded virtual function 'Bird::talk' declared
here: different qualifiers (const vs none)

virtual void talk() const {
^

1 error generated.

Adding in the const fixes the issue:

class Chicken : public Bird {
...
void talk() const override {

cout << "bawwk" << endl;
}

}

int main() {
Chicken chicken("Myrtle");
Bird *b_ptr = &chicken;
b_ptr->talk();

}

The code now prints bawwk.

18.7 Abstract Classes and Interfaces

In some cases, there isn’t enough information in a base class to define a particular member function, but we still want
that function to be part of the interface provided by all its derived classes. In the case of Bird, for example, we may
want a get_wingspan() function that returns the average wingspan for a particular kind of bird. There isn’t a default
value that makes sense to put in the Bird class. Instead, we declare get_wingspan() as a pure virtual function,
without any implementation in the base class:

class Bird {
...
virtual int get_wingspan() const = 0;

};

18.7. Abstract Classes and Interfaces 108

Programming and Data Structures, Release 0.3

The syntax for declaring a function as pure virtual is to put = 0; after its signature. This is just syntax – we aren’t
actually setting its value to 0.

Since Bird is now missing part of its implementation, we can no longer create objects of Bird type. The Bird class is
said to be abstract. We can still declare Bird references and pointers, however, since that doesn’t create a Bird object.
We can then have such references and pointers refer to derived-class objects:

Bird bird("Big Bird"); // ERROR: Bird is abstract
Chicken chicken("Myrtle"); // OK, as long as Chicken is not abstract
Bird &bird_ref = chicken; // OK
Bird *bird_ptr = &chicken; // OK

In order for a derived class to not be abstract itself, it must provide implementations of the pure virtual functions in its
base classes:

class Chicken : public Bird {
...
int get_wingspan() const override {
return 20; // inches

}
};

With a virtual function, a base class provides its derived classes with the option of overriding the function’s behavior.
With a pure virtual function, the base class requires its derived classes to override the function, since the base class
does not provide an implementation itself. If a derived class fails to override the function, the derived class is itself
abstract, and objects of that class cannot be created.

We can also define an interface, which is a class that consists only of pure virtual functions. Such a class provides no
implementation; rather, it merely defines the interface that must be overridden by its derived classes. The following is
an example:

class Shape {
public:
virtual double area() const = 0;
virtual double perimeter() const = 0;
virtual void scale(double s) = 0;

};

With subtype polymorphism, we end up with two use cases for inheritance:

• implementation inheritance, where a derived class inherits functionality from a base class

• interface inheritance, where a derived class inherits the interface of its base class, but not necessarily any imple-
mentation

Deriving from a base class that isn’t an interface results in both implementation and interface inheritance. Deriving
from an interface results in just interface inheritance. The latter is useful to work with a hierarchy of types through a
common interface, using a base-class reference or pointer, even if the derived types don’t share any implementation.

18.7. Abstract Classes and Interfaces 109

Part III

Containers and Dynamic Memory

110

CHAPTER

NINETEEN

CONTAINERS AND ITERATORS

Apologies – this section has not been written yet.

19.1 Range-Based For Loops

A range-based for loop is a special syntax for iterating over sequences that support traversal by iterator. Rather than
writing out each piece of the traversal, we can have the compiler generate it for us:

vector<int> vec = { 1, 2, 3, 4, 5 };
for (int item : vec) {
cout << item << endl;

}

The syntax of a range-based for loop is:

for (<type> <variable> : <sequence>)
<body>

In the example above, the variable is named item and has type int, and vec is the sequence over which the loop
iterates. The compiler automatically converts this into a traversal by iterator:

for (auto it = vec.begin(); it != vec.end(); ++it) {
int item = *it;
cout << item << endl;

}

The variable item is initialized in each iteration from an element in the sequence. Then the code in the body of the
range-based for loop follows.

The following loop attempts to set every element in the vector to the value 42:

for (int item : vec) {
item = 42; // attempt to set element to 42

}

However, this loop does not actually modify any elements. To understand why, let us take a look at its translation into
a traversal by iterator:

for (auto it = vec.begin(); it != vec.end(); ++it) {
int item = *it;
item = 42;

}

111

Programming and Data Structures, Release 0.3

The loop is actually modifying a copy of each element rather than an element itself. To avoid making a copy, we can
declare the loop variable to be a reference:

for (int &item : vec) {
item = 42; // actually set element to 42

}

This translates to:

for (auto it = vec.begin(); it != vec.end(); ++it) {
int &item = *it;
item = 42;

}

This successfully modifies each element to have the value 42.

Range-based for loops are often used in combination with auto, as in the following:

vector<int> vec = { 1, 2, 3, 4, 5 };

for (auto &item : vec) {
item = 42;

}

for (auto item : vec) {
cout << item << endl;

}

The first loop declares item as a reference, so that it aliases an element in the sequence. The second loop does not
declare item as a reference, so it produces a copy of an element in the sequence. The following is the translation of
both loops:

vector<int> vec = { 1, 2, 3, 4, 5 };

for (auto it = vec.begin(); it != vec.end(); ++it) {
int &item = *it; // alias
item = 42;

}

for (auto it = vec.begin(); it != vec.end(); ++it) {
int item = *it; // copy
item = 42;

}

With a range-based for loop, we can simplify print_all():

template <typename Sequence>
void print_all(const Sequence &sequence) {
for (auto &item : sequence) {
cout << item << endl;

}
}

We can call it on any sequence1 that supports traversal by iterator, as long as the element type can be inserted into an
output stream:

1 We can even call print_all() on an array, as long as it still is an array:

19.1. Range-Based For Loops 112

Programming and Data Structures, Release 0.3

vector<string> vec = { "hello", "world!" };
print_all(vec);

19.1.1 Iterating over a Map

The standard-library map defines an iterator that produces key-value pairs upon dereference. The following is an
example that constructs a map, counting how many times each unique word occurs in a vector. It then iterates over the
map to print out the counts.

void print_word_counts(const std::vector<std::string> &words) {
std::map<std::string, int> word_counts;

// Each time a word is seen, add 1 to its entry in the map
for (const auto &word : words) {

word_counts[word] += 1;
}

// Print out the results by iterating through the map.
for (const auto &key_value : word_counts) { // key-value pairs
const auto &word = key_value.first;
const auto &count = key_value.second;
cout << word << "occurred " << count << " times." << endl;

}
}

When incrementing a word’s count, we do not need to check whether the word is in the map; if not, the map automati-
cally inserts the word into the map with a value-initialized count of zero, which we then increment to one.

We use range-based for loops to iterate over both the vector and the map, declaring a type-deduced reference to each
element. A reference avoids making a copy, which is nontrivial for strings. The iteration over the map produces key-
value pairs (std::pair<std::string, int>), and we access the first and second members to obtain the word
and count, respectively.

string arr[] = { "hello", "world!" };
print_all(arr);

This is because a range-based for loop actually calls std::begin() and std::end() on the sequence, rather than directly calling the respective
member functions. For arrays, std::begin() and std::end() return pointers, while for class types, they call the begin() and end() member
functions, respectively.

19.1. Range-Based For Loops 113

CHAPTER

TWENTY

TIME COMPLEXITY

Apologies – this section has not been written yet.

114

CHAPTER

TWENTYONE

ARRAYS

As we mentioned previously, C++ has several different categories of objects, including atomic, array, and class-type
objects. An array is simple collection of objects, built into C++ and many other languages. An array has the following
properties:

• It has a fixed size, set when the array is created. This size never changes as long as the array is alive.

• An array holds elements that are of the same type.

• The elements of an array are stored in a specific order, with the index of the first element being 0.

• The elements are stored contiguously in memory, one after another.

• Accessing any element of an array takes constant time, regardless of whether the element is at the beginning,
middle, or end of the array.

An array variable can be declared by placing square brackets to the right of the variable name, with a compile-time
constant between the brackets, denoting the number of elements. For example, the following declares array to be an
array of four int elements:

int array[4];

The following uses a named constant to declare array2 to be an array of four ints:

const int SIZE = 4;
int array2[SIZE];

In both cases, we did not provide an explicit initialization. Thus, array and array2 are default initialized by default
initializing each of their elements. Since their elements are of atomic type int, they are default initialized to undefined
values.

We can explicitly initialize an array with an initializer list, a list of values in curly braces:

int array[4] = { 1, 2, 3, 4 };

This initializes the element at index 0 to 1, the element at index 1 to 2, and so on.

If the initializer list contains fewer values than the size of the array, the remaining array elements are implicitly initial-
ized. For atomic elements, these remaining elements are initialized to zero values1. Thus, the following initializes the
first two elements of array2 to 1 and 2, respectively, and the last two elements to 0:

int array2[4] = { 1, 2 };

The following results in every element in array3 being initialized to 0:
1 This is referred to as value initialization, which is distinct from default initialization.

115

https://en.cppreference.com/w/cpp/language/value_initialization

Programming and Data Structures, Release 0.3

int array3[4] = {};

Here, we have provided an empty initializer list, so that the first zero elements (i.e. none of them) are explicitly initialized
while the remaining elements (i.e. all of them) are implicitly initialized to 0.

If the size of the array is the same as the size of the initializer list, we can elide the size of the array in its declaration:

int array[] = { 1, 2, 3, 4 };

Figure 21.1 illustrates the layout of array in memory.

0x1000 1 array[0]

0x1004 2 array[1]

0x1008 3 array[2]

0x100c 4 array[3]

array:

Figure 21.1: Layout of an array in memory.

This diagram assumes that an int takes up four bytes in memory, which is the case on most modern machines.

Individual array elements can be accessed with square brackets, with an index between the brackets. Indexing starts at
0, up through the size of the array minus one. For example, the following increments each element in array by one
and prints out each resulting value:

for (int i = 0; i < 4; ++i) {
++array[i];
cout << array[i] << endl;

}

Arrays can be composed with other kinds of objects, such as structs. The following is an array of three Person elements:

struct Person {
string name;
int age;
bool is_ninja;

};

Person people[3];

Figure 21.2 shows the layout of this array in memory.

The following is a struct that contains an array as a member, and its layout is shown in Figure 21.3:

struct Matrix {
int width;
int height;
int data[6];

};

int main() {
Matrix matrix;
...

}

116

Programming and Data Structures, Release 0.3

0x1018 ? age

0x1000 "" name

0x1038 ? age

0x1020 "" name

0x1058 ? age

0x1040 "" name

people:

people[0]

people[1]

people[2]

Person

Person

Person

0x101c true is_ninja

0x103c true is_ninja

0x105c true is_ninja

Figure 21.2: An array of class-type objects.

Matrix

0x1004 ? height

0x1000 ? width

data:

0x1008 ? data[0]

0x100c ? data[1]

0x1010 ? data[2]

0x1014 ? data[3]

0x1018 ? data[4]

0x101c ? data[5]

matrix

Figure 21.3: A class-type object with an array member.

117

Programming and Data Structures, Release 0.3

21.1 Arrays and Pointers

Arrays in C++ are objects. However, in most contexts, there isn’t a value associated with an array as a whole2. The
individual elements (if they are not of array type), have values, but not the array as a whole. Instead, when we use an
array in a context where a value is required, the compiler converts the array into a pointer to the first element in the
array:

int array[] = { 1, 2, 3, 4 };
cout << &array[0] << endl; // prints 0x1000 assuming the figure above
cout << array << endl; // prints 0x1000 assuming the figure above
*array = -1;
cout << array[0] << endl; // prints -1

In this example, assuming the layout in Figure 21.1 where the first element is at address 0x1000, printing array to
standard output just prints out the address 0x1000 – it converts array to a pointer to its first element, and it is the
pointer’s value that is then printed. Similarly, dereferencing the array first turns it into a pointer to the first element,
followed by the dereference that gives us the first element itself.

The tendency of arrays to decay into pointers results in significant limitations when using an array. For instance, we
cannot assign one array to another – the right-hand side of an assignment requires a value, which in the case of an array
will become a pointer, which is then incompatible with the left-hand side array:

int arr1[4] = { 1, 2, 3, 4 };
int arr2[4] = { 5, 6, 7, 8 };
arr2 = arr1; // error: LHS is an array, RHS is a pointer

As discussed before, by default, C++ passes parameters by value. This is also true if the parameter is an array. Since an
array decays to a pointer when its value is required, this implies that an array is passed by value as a pointer to its first
element. Thus, an array parameter to a function is actually equivalent to a pointer parameter, regardless of whether or
not the parameter includes a size:

void func1(int arr[4]); // parameter equivalent to int *arr

void func2(int arr[5]); // parameter equivalent to int *arr

void func3(int arr[]); // parameter equivalent to int *arr

void func4(int *arr);

int main() {
int arr1[4] = { 1, 2, 3, 4 };
int arr2[5];
int x = -3;

func1(arr1); // OK: arr1 turns into pointer, as does parameter of func1
func2(arr1); // OK: arr1 turns into pointer, as does parameter of func2

// compiler ignores size in func2 parameter
func3(arr1); // OK: arr1 turns into pointer, as does parameter of func3
func4(arr1); // OK: arr1 turns into pointer, matches parameter of func4

(continues on next page)

2 The system of values in C++ is very complicated and beyond the scope of this course. In the context of this course, we use the term value to
mean something called an rvalue in programming-language terms. There are a handful of ways to construct an array rvalue in C++, but none that
we will encounter in this course.

21.1. Arrays and Pointers 118

https://en.cppreference.com/w/cpp/language/array#Array-to-pointer_decay
https://en.cppreference.com/w/cpp/language/value_category
https://en.cppreference.com/w/cpp/language/array#Array_rvalues

Programming and Data Structures, Release 0.3

(continued from previous page)

func1(arr2); // OK: arr2 turns into pointer, as does parameter of func1
// compiler ignores size in func1 parameter

func2(arr2); // OK: arr2 turns into pointer, as does parameter of func2
func3(arr2); // OK: arr2 turns into pointer, as does parameter of func3
func4(arr2); // OK: arr2 turns into pointer, matches parameter of func4

func1(&x); // OK: parameter of func1 turns into pointer
func2(&x); // OK: parameter of func2 turns into pointer
func3(&x); // OK: parameter of func3 turns into pointer
func4(&x); // OK: matches parameter of func4

}

This means that a function that takes an array as a parameter cannot guarantee that the argument value corresponds to
an array of matching size, or even that it is a pointer into an array. Instead, we need another mechanism for passing
size information to a function; we will come back to this momentarily.

21.2 Pointer Arithmetic

C++ supports certain arithmetic operations on pointers:

• An integral value can be added to or subtracted from a pointer, resulting in a pointer that is offset from the original
one.

• Two pointers can be subtracted, resulting in an integral value that is the distance between the pointers.

Pointer arithmetic is in terms of number of elements rather than number of bytes. For instance, if an int takes up
four bytes of memory, then adding 2 to an int * results in a pointer that is two ints forward in memory, or a total of
eight bytes:

int array[] = { 4, 3, 2, 1 };
int *ptr1 = array; // pointer to first element
int *ptr2 = &array[2]; // pointer to third element
int *ptr3 = ptr1 + 2; // pointer to third element
int *ptr4 = array + 2; // pointer to third element
++ptr1; // move pointer to second element

In initializing ptr4, array is converted to a pointer to its first element, since the + operator requires a value, and the
result is two ints forward in memory, producing a pointer to the third element. The last line increments ptr1 to point
to the next int in memory. The result is shown in Figure 21.4.

The following demonstrates subtracting pointers:

cout << ptr2 - ptr1 << endl; // prints 1

Since ptr2 is one int further in memory than ptr, the difference ptr2 - ptr is 1.

Pointer arithmetic is one reason why each C++ type has its own pointer type – in order to be able to do pointer arithmetic,
the compiler needs to use the size of the pointed-to type, so it needs to know what that type is. For example, imple-
mentations generally represent double objects with eight bytes, so adding 2 to a double * moves 16 bytes forward
in memory. In general, for a pointer of type T *, adding N to it moves N * sizeof(T) bytes forward in memory3.

Pointers can also be compared with the comparison operators, as in the following using the pointers declared above:
3 sizeof is an operator that can be applied to a type to obtain the number of bytes used to represent that type. When applied to a type, the

parentheses are mandatory (e.g. sizeof(int)). The operator can also be applied to a value, in which case it results in the size of the compile-time
type of that value. Parentheses are not required in this case (e.g. sizeof 4 or sizeof x).

21.2. Pointer Arithmetic 119

Programming and Data Structures, Release 0.3

0x1000 4 array[0]

0x1004 3 array[1]

0x1008 2 array[2]

0x100c 1 array[3]

Stack

main

0x1018 0x1008 ptr2

0x1020 0x1008 ptr3

0x1010 0x1000 ptr1

0x1000 4 array[0]

0x1004 3 array[1]

0x1008 2 array[2]

0x100c 1 array[3]

Stack

main

0x1018 0x1008 ptr2

0x1020 0x1008 ptr3

0x1010 0x1004 ptr1

++ptr1

0x1028 0x1008 ptr4 0x1028 0x1008 ptr4

Figure 21.4: Pointer arithmetic is in terms of whole objects, not bytes.

cout << (ptr1 == ptr2) << endl; // false (prints as 0)
cout << (ptr2 == ptr3) << endl; // true (prints as 1)
cout << (ptr1 < ptr2) << endl; // true
cout << (*ptr1 < *ptr2) << endl; // false (compares element values)
++ptr1;
cout << (ptr1 == ptr2) << endl; // true
cout << (array == &array[0]) << endl; // true (LHS turns into pointer)

Arithmetic is generally useful only on pointers to array elements, since only array elements are guaranteed to be stored
contiguously in memory. Similarly, comparisons are generally only well-defined on pointers into the same array or on
pointers constructed from arithmetic operations on the same pointer.

21.3 Array Indexing

Array indexing in C++ is actually implemented using pointer arithmetic. If one of the operands to the subscript ([])
operator is an array and the other is integral, then the operation is equivalent to pointer arithmetic followed by a deref-
erence:

int arr[4] = { 1, 2, 3, 4 };
cout << *(arr + 2) << endl; // prints 3: arr+2 is pointer to 3rd element
cout << arr[2] << endl; // prints 3: equivalent to *(arr + 2)
cout << 2[arr] << endl; // prints 3: equivalent to *(2 + arr);

// but don't do this!

Thus, if arr is an array and i is integral, then arr[i] is equivalent to *(arr + i):

1. The subscript operation requires the value of arr, so it turns into a pointer to its first element.

2. Pointer arithmetic is done to produce a pointer i elements forward in memory.

3. The resulting pointer is dereferenced, resulting in the element at index i.

21.3. Array Indexing 120

Programming and Data Structures, Release 0.3

Because the subscript operation is equivalent to pointer arithmetic, it can be applied to a pointer equally as well:

int arr[4] = { 1, 2, 3, 4 };
int *ptr = arr + 1; // pointer to second element
cout << ptr[2] << endl; // prints 4: constructs a pointer that is 2

// elements forward in memory, then
// dereferences that

There are several implications of the equivalence between array indexing and pointer arithmetic. First, it is what makes
array access a constant time operation – no matter the index, accessing an element turns into a single pointer addition
followed by a single dereference. The equivalence is also what makes passing arrays by value work – the result is a
pointer, which we can still subscript into since it just does pointer arithmetic followed by a dereference. Finally, it
allows us to work with subsets of an array. For instance, the following code prints out just the middle elements of an
array:

void print_array(int array[], int size) {
for (int i = 0; i < size; ++i) {
cout << array[i] << " ";

}
}

int main() {
int array[4] = { 3, -1, 5, 2 };
print_array(arr + 1, 2); // prints out just -1 5

}

0x1000 3 array[0]

0x1004 -1 array[1]

0x1008 5 array[2]

0x100c 2 array[3]

Stack

main

print_array

0x1018 2 size

0x101c 0 i

0x1010 0x1004 array

Figure 21.5: Passing a subset of an array to a function.

The print_array() function receives a pointer to the array’s second element as well as a size of 2, as shown in Figure
21.5. Thus, it only prints out the second and third elements; as far as the function knows, it is working with an array of
size 2 that starts at the address 0x1004.

21.3. Array Indexing 121

Programming and Data Structures, Release 0.3

21.4 More on Array Decay

An array only decays into a pointer when its value is required. When an array object’s value is not required, it does not
decay into a pointer. For example, the address-of (&) operator requires an object but not its value – thus, applying & to
an array produces a pointer to the whole array, not a pointer to an individual element nor a pointer to a pointer4.

Another example is applying the sizeof operator to an array. The operator produces the size of the whole array in
bytes5, as opposed to applying it to a pointer, which just produces the size of a pointer (generally eight bytes on modern
systems):

int x = 42;
int arr[5] = { 1, 2, 3, 4, 5 };
int *ptr = arr;
cout << sizeof x << endl; // 4 (on most machines)
cout << sizeof arr << endl; // 20
cout << sizeof ptr << endl; // 8

Once an array has turned into a pointer, the resulting pointer loses all information about the size of the array, or even
that it is a pointer into an array. Thus, we need another mechanism for keeping track of the size of an array, such as
when we pass the array to a function (if it is passed by value, it turns into a pointer which retains no information about
the array’s size).

21.5 The End of an Array

If a program dereferences a pointer that goes past the bounds of the array, the result is undefined behavior6. If we are
lucky, the program will crash, indicating we did something wrong and giving us an opportunity to debug it. In the
worst case, the program may compute the right result when we run it on our own machine but misbehave when run on
a different platform (e.g. the autograder).

There are two general strategies for keeping track of where an array ends.

1. Keep track of the length separately from the array. This can be done with either an integer size or by constructing
a pointer that is just past the end of an array (by just adding the size of the array to a pointer to the array’s first
element).

2. Store a special sentinel value at the end of the array, which allows an algorithm to detect that it has reached the
end.

The first strategy is what we used in defining the print_array() function above. As demonstrated there, the stored
size may be smaller than the size of the array, resulting in the function operating on a subset of the array.

The second strategy requires there to be a special value that can be reserved to indicate the end of the array, and that
we are assured will not occur as a real element. It is how built-in (C-style) strings (as opposed to C++ std::string)
are implemented, though we do not cover the details here. Instead, we will return to the sentinel strategy when we
implement linked data structures.

4 A pointer to an array of 4 ints can be declared using the syntax int (*ptr_to_arr)[4];. The address value stored in a pointer to an array
is generally the same address as that of the array’s first element.

5 Thus, the expression sizeof array / sizeof *array recovers the number of elements, as long as array is still an array.
6 Constructing a pointer that is out of bounds is not a problem; we often construct pointers that are just past the end of an array, as we will see in

a moment. It is dereferencing such a pointer that results in undefined behavior.

21.4. More on Array Decay 122

Programming and Data Structures, Release 0.3

21.6 Array Traversal

The print_array() function above also demonstrates how to traverse through an array using an index that starts at 0
up to the size of the array, exclusive. The following is another example:

int const SIZE = 3; // constant to represent array size
int array[SIZE] = { -1, 7, 3 };
for (int i = 0; i < SIZE; ++i) {
cout << *(array + i) << endl; // using pointer arithmetic
cout << array[i] << endl; // using subscript (better)

}

0x1004 -1 array[0]

0x1008 7 array[1]

0x100c 3 array[2]

Stack

main

0x1000 3 SIZE

0x1010 0 i

0x1004 -1 array[0]

0x1008 7 array[1]

0x100c 3 array[2]

Stack

main

0x1000 3 SIZE

0x1010 1 i

0x1004 -1 array[0]

0x1008 7 array[1]

0x100c 3 array[2]

Stack

main

0x1000 3 SIZE

0x1010 2 i

0x1004 -1 array[0]

0x1008 7 array[1]

0x100c 3 array[2]

Stack

main

0x1000 3 SIZE

0x1010 3 i

Figure 21.6: Traversal by index uses an index to walk through an array.

This pattern of accessing elements is called traversal by index – we use an integer index in the range [0, 𝑆𝐼𝑍𝐸) where
𝑆𝐼𝑍𝐸 is the size of the array, and we use the index to obtain the corresponding element. We can use the subscript
operator or do pointer arithmetic ourselves. (The former is generally considered better, since it is more familiar and
clearer to most programmers. However, you will often see both arr[0] and *arr used to access the first element.)
The actual syntax we use is irrelevant to the pattern – what makes this traversal by index is that we use an integer index
to access the array, and we traverse through the elements by modifying the index.

Another pattern we can use is traversal by pointer, which walks a pointer across the elements of an array:

int const SIZE = 3; // constant to represent array size
int array[SIZE] = { -1, 7, 3 };
int *end = array + SIZE; // pointer just past the end of arr
for (int *ptr = array; ptr < end; ++ptr) { // walk pointer across arr
cout << *ptr << endl; // dereference to obtain element

}

Here, we start by constructing a pointer that is just past the end of the array: the last element is at arr + SIZE - 1,
so we need to end our traversal when the pointer we are using reaches arr + SIZE. We then use another pointer that
starts at the first element, dereference it to obtain an element, and then increment it to move on to the next element.
The syntax we use to dereference an element is irrelevant to the pattern (it can be *ptr or ptr[0]) – what makes this
traversal by pointer is that we use a pointer to each element to access the array, and we traverse through the elements
by modifying that pointer.

Traversal by index is the more common pattern when working with general arrays. However traversal by pointer is
a special case of traversal by iterator, which we saw previously. We will shortly see that traversal by iterator/pointer
allows us to write algorithms that work on both library containers and arrays. Thus, both the traversal-by-index and
traversal-by-pointer patterns are important to programming in C++.

Aside from providing us insight about memory and how objects are stored, arrays are a fundamental abstraction that
can be used to build more complex abstractions. We proceed to see how to use arrays to build data structures such as

21.6. Array Traversal 123

Programming and Data Structures, Release 0.3

0x1004 -1 array[0]

0x1008 7 array[1]

0x100c 3 array[2]

Stack

main

0x1000 3 SIZE

0x1010 0x1004 ptr

0x1018 0x1010 end

0x1004 -1 array[0]

0x1008 7 array[1]

0x100c 3 array[2]

Stack

main

0x1000 3 SIZE

0x1010 0x1008 ptr

0x1018 0x1010 end

0x1004 -1 array[0]

0x1008 7 array[1]

0x100c 3 array[2]

Stack

main

0x1000 3 SIZE

0x1010 0x100c ptr

0x1018 0x1010 end

0x1004 -1 array[0]

0x1008 7 array[1]

0x100c 3 array[2]

Stack

main

0x1000 3 SIZE

0x1010 0x1010 ptr

0x1018 0x1010 end

Figure 21.7: Traversal by pointer uses a pointer to walk through an array.

vectors and sets.

21.7 Arrays and const

Since an array does not have a value of its own, it cannot be assigned to as a whole – we saw previously that a compile
error would result, since we cannot obtain an array value to place on the right-hand side of the assignment. Thus, it is
also not meaningful for an array itself to be const either.

Similar to a reference, an array may not be const itself, but its elements may be:

const double arr[4] = { 1.1, 2.3, -4.5, 8 };
arr[2] = 3.1; // ERROR -- attempt to assign to const object

The declaration const double arr[4] is read inside out as “arr is an array of four constant doubles.” The elements
can be initialized through an initializer list, but they may not be modified later through assignment.

If an array is a member of a class-type object, the array elements inherit the “constness” of the object itself. For
example, consider the following:

struct Foo {
int num;
int *ptr;
int arr[4];

};

Like any const object, a const Foo must be initialized upon creation:

int main() {
int x = 3;
const Foo foo = { 4, &x, { 1, 2, 3, 4 } };
...

}

The array member can be initialized using its own initializer list, which is the same syntax for initializing a local array
variable.

As we saw previously, attempting to modify foo.num or foo.ptr results in a compiler error. The same is true for the
elements of foo.arr:

21.7. Arrays and const 124

Programming and Data Structures, Release 0.3

Foo

0x1008 0x1000 ptr

0x1004 4 num

arr:

0x100c 1 arr[0]

0x1010 2 arr[1]

0x1014 3 arr[2]

0x1018 4 arr[3]

foo

Stack

main

0x1000 3 x

Figure 21.8: Contents of a Foo object. Declaring the object as const only prohibits modifications to the subobjects
contained within the memory for the object.

foo.arr[0] = 2; // ERROR

Sine the array element is a subobject of a const object, it cannot be modified.

21.7. Arrays and const 125

CHAPTER

TWENTYTWO

ARRAY-BASED CONTAINERS

A container is an abstract data type whose purpose is to hold objects of some other type. We have already seen two
examples of containers: built-in arrays and vectors from the standard library. Both are containers that hold elements in
a particular order, indexed starting from 0. A built-in array has a fixed size, while a vector can grow and shrink.

Let’s define our own container ADT, using built-in arrays as our building block. Rather than an ordered sequence, we
will build a set abstraction, which represents an unordered collection of unique elements. We will start with a container
that holds integers, generalizing it to arbitrary element types next time.

In designing our ADT, we will use the following process:

1. Determine which operations our ADT will support.

2. Write some code that uses our ADT. This will helps us figure out what the right interface should be, and it will
serve as a test case. (Ideally, we would also write unit tests for each part of the public interface, following the
pattern of test-driven development.)

3. Define the ADT’s public interface, including both function signatures and documentation.

4. Come up with a data representation. Define member variables and determine the representation invariants.

5. Write definitions for the ADT’s constructors and member functions, making sure that they adhere to the repre-
sentation invariants.

22.1 Set Operations

The following are the operations our set will support:

• Creating an empty set.

• Inserting a value into a set. We will allow an existing item to be inserted – it will just do nothing.

• Removing a value from a set. We will allow a nonexistent item to be removed – it will just do nothing.

• Check if a value is contained in a set.

• Count the number of items in a set.

• Print a character representation of a set to an output stream.

126

Programming and Data Structures, Release 0.3

22.2 Code Example

Here is a small program that uses a set:

int main() {
IntSet set;
set.insert(7);
set.insert(32);
set.insert(32);

cout << "Size: " << set.size() << endl; // prints 2
set.print(cout); // prints { 7, 32 } in some arbitrary order

set.insert(42);
set.remove(32);
set.remove(32);

cout << "Contains 32? " << set.contains(32) << endl; // prints 0 (false)
cout << "Contains 42? " << set.contains(42) << endl; // prints 1 (true)

}

22.3 Public Interface

The code example leads to the following public interface:

class IntSet {
public:
// Maximum size of a set.
static const int MAX_SIZE = 10;

// EFFECTS: Initializes this set to be empty.
IntSet();

// REQUIRES: size() < MAX_SIZE
// MODIFIES: *this
// EFFECTS: Adds value to the set, if it isn't already in the set.
void insert(int value);

// MODIFIES: *this
// EFFECTS: Removes value from the set, if it is in the set.
void remove(int value);

// EFFECTS: Returns whether value is in the set.
bool contains(int value) const;

// EFFECTS: Returns the number of elements.
int size() const;

// EFFECTS: Prints out the set in an arbitrary order.
void print(std::ostream &os) const;

};

22.2. Code Example 127

Programming and Data Structures, Release 0.3

The public interface includes a default constructor and member functions to insert or remove an item, check if an item
is in the set, obtain its size, and print a representation of the set to a stream. The latter three functions do not modify
the set, so they are declared as const, meaning that the this pointer will be a pointer to const. The compiler will then
enforce that those functions do not modify any member variables.

22.4 static Data Members

The public interface also includes a constant, MAX_SIZE, that denotes the maximum size of a set. We define the constant
inside the IntSet class. This distinguishes the constant from other constants of the same name; there may be some
other ADT with a MAX_SIZE. It also makes use of encapsulation, which allows all of an ADT’s data and functionality
to be defined together within a class.

The constant is declared static, which has a specific meaning when used in a class – it indicates that the given member
is not associated with an object of the class, but with the class as a whole. For a member variable, this means that there
is a single copy of that variable in the program, located in static storage. Without the static keyword, each object of
the class would have its own copy, located in the memory for that object. The static keyword also allows a member
variable to be a compile-time constant, provided it is also declared as const (or constexpr) and initialized from an
expression that can be computed at compile time.1

A static member can be accessed by name from within the class, the same as a non-static member. It can be accessed
from outside the class with the scope-resolution operator:

int main() {
IntSet set;
for (int i = 0; i < IntSet::MAX_SIZE; ++i) {
set.insert(i);

}
}

We need a compile-time constant because we will use a member variable that is a built-in array as part of our data
representation.2 In C++, a local or member variable that is an array must have a size that is known to the compiler. In
the case of a local variable, the compiler needs to know how big it is so that the program can create activation records
of the correct size. For a member variable, the compiler needs to know its size so that it can determine the size of the
object as a whole. Pointer arithmetic (including array accesses) requires the compiler to know the size of an object at
compile time, since it is in terms of whole objects rather than with respect to individual bytes.

22.5 Data Representation

We rely on existing types to represent the data of our IntSet. For the elements themselves, we use a built-in array,
with MAX_SIZE as its capacity. However, our set will start out empty, after which we can add and remove elements
as we please. Thus, the size of the set will generally not be the same as the size of the array, and we need a separate
member variable to keep track of the number of elements in the set. We will use an int for this member.

class IntSet {
...

private:
(continues on next page)

1 Member variables that are static need not be compile-time constants. However, a member variable that isn’t a compile-time constant cannot
be initialized at the point of declaration (unless it is declared as inline in C++17 and onward). The variable must be defined outside of the class,
generally in a source (.cpp) file. As with a member function, the scope-resolution operator is used to define a member variable outside the class
(e.g. int IntSet::foo = 3;).

2 In the future, we will see how to eliminate the fixed-size restriction by storing the elements indirectly using a dynamic array. We will see that
this raises issues of memory management and learn how to resolve them.

22.4. static Data Members 128

Programming and Data Structures, Release 0.3

(continued from previous page)

int elements[MAX_SIZE];
int num_elements;

};

Now that we’ve determined a data representation, we need to figure out what values correspond to valid sets. We use
representation invariants to specify the set of valid values.

For num_elements, a negative value does not make sense, since a set cannot have a negative size. At the same time, our
sets do not have enough space to store more than MAX_SIZE elements, so that places an upper bound on num_elements.
The invariants for num_elements are thus 0 <= num_elements && num_elements <= MAX_SIZE.

For elements, we need to know where in the array the set’s elements are actually stored. We will store them at
the beginning of the array, so one invariant is that the first num_elements items in the array are the ones in the set.
The set abstraction prohibits duplicate elements, so another invariant is that there are no duplicates among the first
num_elements items in elements.

We document the representation invariants where we define our representation:

class IntSet {
...

private:
int elements[MAX_SIZE];
int num_elements;
// INVARIANTS:
// 0 <= num_elements && num_elements <= MAX_SIZE
// the first num_elements items in elements are the items in the set
// the first num_elements items in elements contain no duplicates

};

22.6 size_t

The size_t type represents only nonnegative integers, and the C++ standard guarantees that it is large enough to hold
the size of any object. Since it does not represent negative integers, we could have used it for num_elements rather
than defining 0 <= num_elements as a representation invariant. We would then also use size_t as the return type
for size(), which is what the standard-library containers do.

C++ has integral types that are unsigned, which do not represent negative numbers, and size_t is just one example. The
int type is signed (unless it is preceded by the unsigned keyword). Unsigned integers can lead to subtle programming
errors. The following is an example that compares a signed and unsigned integer:

int main() {
size_t s = 3;
int i = -1;
cout << (s < i) << endl; // prints 1 (true)

}

Perhaps non-intuitively, the comparison s < i is true, even though s is positive but i is negative. This is because
the compiler converts i to a size_t in doing the comparison, and the data that represents a negative signed integer
actually represents a very large unsigned integer.

Another common error is incorrectly iterating backwards over a sequence:

22.6. size_t 129

Programming and Data Structures, Release 0.3

int main() {
vector<int> vec = { 1, 2, 3 };
for (size_t i = vec.size() - 1; i >= 0; --i) {
cout << vec[i] << endl;

}
}

This code goes off the end of the vector, resulting in undefined behavior. The reason is that a size_t is always greater
than or equal to 0, and when i is equal to 0 and decremented, its value wraps around to the largest possible size_t
value. The following iteration correctly avoids this problem:

int main() {
vector<int> vec = { 1, 2, 3 };
for (size_t i = vec.size(); i > 0; --i) {
cout << vec[i - 1] << endl;

}
}

The loop iterates from vec.size() down to 1, offsetting by 1 when indexing into the vector. The following equivalent
code makes use of postfix decrement to avoid the offset in the index expression:

int main() {
vector<int> vec = { 1, 2, 3 };
for (size_t i = vec.size(); i-- > 0;) {
cout << vec[i] << endl;

}
}

Given the pitfalls of unsigned integers, many C++ programmers avoid them, using signed integers instead. We too will
generally stick to signed integers.

22.7 Implementation

We proceed to define the constructor and member functions of IntSet, defining them as they would appear in a source
file, outside the class definition.

We require only a default constructor for IntSet. However, we cannot rely on a compiler-generated implicit one: it
would default initialize num_elements to an undefined value, violating our representation invariants. Thus, we need
to define our own default constructor.3

IntSet::IntSet() : num_elements(0) {}

We need not do anything with elements. It gets default initialized to contain undefined values, but that doesn’t violate
our representation invariants; since num_elements is 0, the invariants for elements are trivially satisfied.

We proceed to define contains(). The representation invariants tell us that the valid items are the first num_elements
in elements. They can be stored in any order, so we need to iterate through them to see if the value is in the set.

bool IntSet::contains(int value) const {
for (int i = 0; i < num_elements; ++i) {

(continues on next page)

3 Alternatively, we can initialize num_elements to 0 at the point it is declared. The implicitly defined default constructor would then be sufficient;
it would still have an empty member-initializer list, but the compiler uses the inline initialization of a member variable if it is not initialized in the
member-initializer list.

22.7. Implementation 130

Programming and Data Structures, Release 0.3

(continued from previous page)

if (elements[i] == value) {
return true;

}
}
return false;

}

When we find an item, we can return immediately without checking the rest of the elements. On the other hand, if we
get through all the elements without finding the given value, it is not in the set so we return false.

For inserting into the set, we first assert the requires clause, which ensures that our invariant of num_elements <=
MAX_SIZE is never violated. We also must check whether the value is in the set, since adding it again would violation the
invariant of no duplicates. If the value is not in the set, the simplest way to insert it is to place it at index num_elements
and increment that variable. This meets the invariant that the first num_elements items in the array are the values in
the set.

void IntSet::insert(int value) {
assert(size() < MAX_SIZE);
if (!contains(value)) {
elements[num_elements] = value;
++num_elements; // we could use num_elements++ in the line above instead

}
}

To remove an element, we first need to check whether the value is in the set. If so, we need to know its location in
the array, which would require iterating through the elements to find it. Rather than repeating this algorithm in both
contains() and remove(), we define a private helper function to do so and call it in both places.

class IntSet {
...

private:
int indexOf(int value) const;

};

int IntSet::indexOf(int value) const {
for (int i = 0; i < num_elements; ++i) {
if (elements[i] == value) {
return i;

}
}
return -1;

}

Rather than returning whether or not the value is in the set, indexOf() returns its actual index if it is there. If not, it
returns an invalid index; we use -1, since indices start at 0. We can then write contains() as follows:

bool IntSet::contains(int value) const {
return indexOf(value) != -1;

}

We proceed to define remove():

22.7. Implementation 131

Programming and Data Structures, Release 0.3

void IntSet::remove(int value) {
int index = indexOf(value);
if (index != -1) {
elements[index] = elements[num_elements - 1];
--num_elements;

}
}

In order to actually remove the item, we need to place another item at its location. The simplest solution that meets the
representation invariants is to copy over the last item and then decrement num_elements, which ensures that the first
num_elements items are the values in the set.

elements num_elements
47 6 3 5

0 1 2 3 4 5 6 7 8 9

5 3

Figure 22.1: Removing an element from an unordered set can be done by copying the last element into the position
vacated by the removed element.

The remaining member functions are defined as follows:

int IntSet::size() const {
return num_elements;

}

void IntSet::print(std::ostream &os) const {
os << "{ ";
for (int i = 0; i < num_elements; ++i) {
os << elements[i] << " ";

}
os << "}";

}

22.8 Sorted Representation

The representation of IntSet places no restrictions on the ordering of elements in the array. This simplifies the imple-
mentation of insert() and remove(), but it requires contains() (and indexOf()) to iterate over every element in
the worst case.

An alternate representation would be to require that the set elements are stored in sorted, increasing order. The member
variables remain the same – it is the representation invariants that change.

class SortedIntSet {
...

private:
int elements[MAX_SIZE];
int num_elements;
// INVARIANTS:

(continues on next page)

22.8. Sorted Representation 132

Programming and Data Structures, Release 0.3

(continued from previous page)

// 0 <= num_elements && num_elements <= MAX_SIZE
// the first num_elements items in elements are the items in the set
// the first num_elements items in elements contain no duplicates
// the first num_elements items are in sorted, increasing order

};

To insert an item, we can no longer just put it after the existing elements, since the new value may be smaller than
existing values. Instead, we need to store it at its appropriate sorted position. This requires moving existing elements
out of the way if necessary. Our algorithm will start after the last element and repeatedly:

• Compare the item to the left with the value we are inserting.

• If the item to the left is less than the new value, the new value is placed at the current position, and we are done.

• If the item is greater than the new value, then the old item is moved one position to the right, and we repeat the
process one position over to the left.

• If no more items are to the left, we place the new value at the current position (i.e. the beginning of the array).

elements num_elements
43 5 6 7

0 1 2 3 4 5 6 7 8 9

4 5 6 7 5

Figure 22.2: Inserting into an ordered set requires shifting existing elements to make room for the new element at the
proper location.

void SortedIntSet::insert(int value) {
assert(size() < MAX_SIZE);
if (!contains(value)) {
int index = num_elements;
while (index > 0 && elements[index - 1] > value) {
elements[index] = elements[index - 1];
--index;

}
elements[index] = value;
++num_elements;

}
}

Similarly, to remove an item, we must shift the remaining elements leftward in order to maintain our representation
invariants.

elements num_elements
43 5 6 7

0 1 2 3 4 5 6 7 8 9

6 7 3

Figure 22.3: Removing from an ordered set requires shifting elements to preserve the representation invariants.

22.8. Sorted Representation 133

Programming and Data Structures, Release 0.3

void SortedIntSet::remove(int value) {
int index = indexOf(value);
if (index != -1) {
for (; index < num_elements - 1; ++index) {
elements[index] = elements[index + 1];

}
--num_elements;

}
}

The advantage of sorting is that we don’t have to look through all the elements to determine the location of a value.
Instead, we can use binary search, which eliminates half the search space in each step:

• Compare the value we are looking for to the middle element among the remaining items.

• If the value is equal to the middle element, we have found its index.

• If the value is less than the middle element, we know it must be to the left, if it is in the set. Thus, we need only
repeat the search on the items in the first half.

• If the value is greater than the middle element, we know it must be to the right, if it is in the set. Thus, we need
only repeat the search on the items in the second half.

• If we have run out of elements to search, the value is not in the set.

The following implements this algorithm:

int SortedIntSet::indexOf(int value) const {
int start = 0;
int end = num_elements;
while (start < end) {
int middle = start / 2 + end / 2;
if (value == elements[middle]) {
return middle;

} else if (value < elements[middle]) {
end = middle;

} else {
start = middle + 1;

}
}
return -1;

}

Since half the search space is eliminated in each step, this algorithm takes time that is logarithmic in the size of the set.
We denote this as O(log 𝑛), where 𝑛 is the number of elements in the set.

For a set of size 𝑛, the following compares the worst-case runtime of each operation on unsorted and sorted sets:

Operation Unsorted Set Sorted Set
insert() O(𝑛) O(𝑛)
remove() O(𝑛) O(𝑛)
contains() O(𝑛) O(log 𝑛)
size() O(1) O(1)
constructor O(1) O(1)

The notation O(1) means that the operation takes constant time: the time it takes is independent of the size of the set.

22.8. Sorted Representation 134

Programming and Data Structures, Release 0.3

The insert() and remove() operations must first check whether the item is in the set, so they can be no faster than
contains(). The latter is significantly faster on a sorted set than an unsorted set, demonstrating the advantage of
sorting.

22.8. Sorted Representation 135

CHAPTER

TWENTYTHREE

CONTAINER ADTS AND POLYMORPHISM

We continue our discussion of container ADTs by examining several forms of polymorphism in the context of con-
tainers. We will start by looking at operator overloading, a form of ad hoc polymorphism, and then proceed to discuss
parametric polymorphism.

23.1 Operator Overloading

C++ follows the philosophy that user-defined types should have the same access to language facilities as built-in types.
Since operators can be used with built-in atomic types, C++ allows operators to be applied to class types through
operator overloading.

Most operators in C++ can be overloaded. An operator overload requires at least one of the operands to be of class
type1 – the behavior of operators on atomic types cannot be changed.

When the compiler encounters an operator where at least one operand is of class type, it looks for a function whose
name is operator followed by the symbol for the actual operator. For example, if + is applied to two IntSets, the
compiler looks for a function with name operator+ that can be applied to two IntSet objects. For most operators,
the function can either be a top-level function or a member of the type of the left-most operand, if it is of class type.

The following is a member function that defines the + operation to compute the union of two IntSets:

class IntSet {
...

public:
IntSet operator+(const IntSet &rhs) const;

};

IntSet IntSet::operator+(const IntSet &rhs) const {
IntSet result = *this;
for (int i = 0; i < rhs.num_elements; ++i) {
result.insert(rhs.elements[i]);

}
return result;

}

The function first copies over the receiver object into a new local IntSet. It then iterates over the elements in the other
IntSet, inserting them into the result. As we saw last time, the insert() function only inserts an element if the set
does not already contain the item.

We can now call the member function directly, or we can apply the + operator instead. When we do so, the compiler
finds the overloaded operator+() and calls it for us.

1 The operand can also be of enumeration type, which is beyond the scope of this course.

136

https://en.cppreference.com/w/cpp/language/enum

Programming and Data Structures, Release 0.3

int main() {
IntSet set1;
set1.insert(32);
set1.insert(42);
set1.insert(7);

IntSet set2;
set2.insert(12);
set2.insert(-3);
set2.insert(42);

IntSet set3 = set1.operator+(set2);
set3.print(cout); // prints { 32, 42, 7, 12, -3 }

IntSet set4 = set1 + set2;
set4.print(cout); // prints { 32, 42, 7, 12, -3 }

}

In theory, we could instead define the overloaded operator as a top-level function, declared as follows:

IntSet operator+(const IntSet &lhs, const IntSet &rhs);

However, we did not define an interface for iterating through the elements of an IntSet from outside the class, so we
cannot actually implement this function.

Overloaded operators can take arguments by value or by reference, like any other function. In most cases, we pass the
arguments by reference to avoid making a copy.

Though most operators can be overloaded either as top-level or member functions, there are some cases where we must
use a top-level function:

• The first operand is of atomic type. Atomic types are not classes, so they do not have member functions.

• The first operand is of class type, but we do not have access to the class definition, so we cannot define a new
member function.

An example of the latter is overloading the stream-insertion operator, where we do not have access to the definition of
ostream. The following overloads insertion of an IntSet:

std::ostream & operator<<(std::ostream &os, const IntSet &set) {
set.print(os);
return os;

}

We saw previously that inserting to a stream evaluates back to the stream object. To support this properly, our overload
returns the given stream object. It must return the object by reference:

• Streams cannot be copied, so the code would not compile if it returned a stream by value.

• Even if streams could be copied, we want to return the original stream object itself, not a copy.

• Even if a copy would work, we would end up with object slicing, since os actually will refer to an object of a
class that derives from ostream.

The parameters are in the same order as the operands, from left to right. The function need only call the print()
member function on the IntSet and then return the given ostream object. Then we can insert an IntSet directly
into a stream:

23.1. Operator Overloading 137

Programming and Data Structures, Release 0.3

int main() {
IntSet set;
set.insert(32);
set.insert(42);
cout << set << endl; // prints { 32, 42 }

}

In other cases, we need to define an operator as a member function:

• If the overload needs access to private members, a member function would have access because it is part of the
class.2

• Some operators can only be overloaded as member functions: the assignment operator (=), the function-call
operator (()), the subscript operator ([]), and the arrow operator (->). (We will see examples of overloading
the first two operators later.)

As an example, let’s overload the subscript operator to check whether the given value is in the set. The following does
so:

class IntSet {
...

public:
bool operator[](int value) const;

};

bool IntSet::operator[](int value) const {
return contains(value);

}

The following is an example of applying the operator:

int main() {
IntSet set;
set.insert(32);
cout << set[32] << endl; // prints 1 (true)
cout << set[42] << endl; // prints 0 (false)

}

23.2 Parametric Polymorphism

The IntSet container only holds elements that are of type int. Suppose we wanted another container that holds char
values. One solution is to copy and paste the IntSet code, then change int to char everywhere it refers to the element
type:

class CharSet {
public:
// Maximum size of a set.
static const int MAX_SIZE = 10;

// EFFECTS: Initializes this set to be empty.
(continues on next page)

2 In the future, we will see that we can use a friend declaration to give an outside class or function access to private members. Friend declarations
are sometimes used with operator overloads.

23.2. Parametric Polymorphism 138

Programming and Data Structures, Release 0.3

(continued from previous page)

CharSet();

// REQUIRES: size() < MAX_SIZE
// MODIFIES: *this
// EFFECTS: Adds value to the set, if it isn't already in the set.
void insert(char value);

// MODIFIES: *this
// EFFECTS: Removes value from the set, if it is in the set.
void remove(char value);

// EFFECTS: Returns whether value is in the set.
bool contains(char value) const;

// EFFECTS: Returns the number of elements.
int size() const;

// EFFECTS: Prints out the set in an arbitrary order.
void print(std::ostream &os) const;

private:
char elements[MAX_SIZE];
int num_elements;
// INVARIANTS:
// 0 <= num_elements && num_elements <= MAX_SIZE
// the first num_elements items in elements are the items in the set
// the first num_elements items in elements contain no duplicates

};

This is not a very satisfying solution. It leads to duplication of nearly identical code. Furthermore, if we then wanted
a set of doubles, we would have to define an almost identical DoubleSet, and so on.

We already know how to avoid code duplication when we have a value that can be different: add a function parameter
that allows the user to specify the value they care about. The problem here is that our entity that differs is not a value, but
a type. While function parameters can represent different argument values, we need another mechanism for specifying
type arguments. The mechanism that C++ provides is a template.

A template is a model for producing code. We write a generic version, parameterized by one or more template param-
eters. The compiler then instantiates a specific version of the code by substituting arguments for the parameters and
compiling the resulting code. We specify a template and its parameters by placing a template header before the entity
that we are defining.

template <typename T>
class UnsortedSet {

...
};

The template header can go on the same line or the previous one: whitespace generally does not matter in C++. The
header begins with the template keyword, followed by a parameter list surrounded by angle brackets. Within the
parameter list, we introduce a template parameter by specifying the kind of entity the parameter can represent. The
typename keyword indicates that the parameter is a type parameter.3 The parameter name then follows. Here, we have

3 The class keyword can be used instead of typename; the two are equivalent in this context. With either keyword, a non-class type can still
be used as the type argument.

23.2. Parametric Polymorphism 139

Programming and Data Structures, Release 0.3

chosen the name T, since we don’t have further information about the type. (Value_type or Element_type are other
common names to use with a container.)

A template may have more than one parameter, and it can also have a parameter that is of integral type. The following
is how the std::array template is declared:

template <typename T, std::size_t N>
class array;

Since the entity that follows the template header is a class, it is a class template. It takes two arguments, one for the
element type and the other for the size of the container, which must be a compile-time constant. We can then create a
std::array of 10 ints as follows:

std::array<int, 10> items;

The syntax for using a class template is to follow the name of the template with an argument list enclosed by angle
brackets. We can similarly create and use an unsorted set of chars:

UnsortedSet<char> char_set;
char_set.insert('e');
char_set.insert('a');
char_set.insert('e');
cout << char_set << endl; // prints { e, a }

In order for this to work, we write the definition of UnsortedSet to use the template parameter T for the element type.
The scope of a template parameter is the entire entity that follows; if it is a class, then the scope is the entire class
definition.

template <typename T>
class UnsortedSet {
public:
// Maximum size of a set.
static const int MAX_SIZE = 10;

// EFFECTS: Initializes this set to be empty.
UnsortedSet();

// REQUIRES: size() < MAX_SIZE
// MODIFIES: *this
// EFFECTS: Adds value to the set, if it isn't already in the set.
void insert(const T &value);

// MODIFIES: *this
// EFFECTS: Removes value from the set, if it is in the set.
void remove(const T &value);

// EFFECTS: Returns whether value is in the set.
bool contains(const T &value) const;

// EFFECTS: Returns the number of elements.
int size() const;

// EFFECTS: Prints out the set in an arbitrary order.
void print(std::ostream &os) const;

(continues on next page)

23.2. Parametric Polymorphism 140

Programming and Data Structures, Release 0.3

(continued from previous page)

private:
T elements[MAX_SIZE];
int num_elements;
// INVARIANTS:
// 0 <= num_elements && num_elements <= MAX_SIZE
// the first num_elements items in elements are the items in the set
// the first num_elements items in elements contain no duplicates

};

The actual type argument used to instantiate UnsortedSet may be something small like int, or it may be a large class
type such as string. Thus, it is good practice to pass objects of a template parameter by reference rather than by value,
avoiding copying potentially large objects.

When we use UnsortedSet with a particular type argument, the compiler actually plugs the argument in for T, gener-
ating code for that instantiation and compiling it with the rest of the program. For example, UnsortedSet<string>
is instantiated as follows:

class UnsortedSet<string> {
public:
// Maximum size of a set.
static const int MAX_SIZE = 10;

// EFFECTS: Initializes this set to be empty.
UnsortedSet();

// REQUIRES: size() < MAX_SIZE
// MODIFIES: *this
// EFFECTS: Adds value to the set, if it isn't already in the set.
void insert(const string &value);

// MODIFIES: *this
// EFFECTS: Removes value from the set, if it is in the set.
void remove(const string &value);

// EFFECTS: Returns whether value is in the set.
bool contains(const string &value) const;

// EFFECTS: Returns the number of elements.
int size() const;

// EFFECTS: Prints out the set in an arbitrary order.
void print(std::ostream &os) const;

private:
string elements[MAX_SIZE];
int num_elements;
// INVARIANTS:
// 0 <= num_elements && num_elements <= MAX_SIZE
// the first num_elements items in elements are the items in the set
// the first num_elements items in elements contain no duplicates

};

23.2. Parametric Polymorphism 141

Programming and Data Structures, Release 0.3

23.2.1 Function Templates

We can also define a function as a template, resulting in a function template. For example, the following computes the
maximum of two items of the same type:

template <typename T>
T max(const T &value1, const T &value2) {
return value2 > value1 ? value2 : value1;

}

As with a class template, we define a function template by preceding it with a template header, which introduces one
or more template parameters. We can then use the parameter anywhere in the function definition. Here, our function
template takes two arguments of the same type and compares them. The ?: operator is a conditional. It evaluates its
first operand, and if the result is true, it produces the second operand. Otherwise, it produces the third operand.

Similar to a class template, we can use a function template by following its name with an argument list enclosed by
angle brackets:4

int main() {
int i1 = 3;
int i2 = -3;
cout << max<int>(i1, i2) << endl;
cout << max<double>(3.1, 7.5) << endl;

}

Unlike a class template, however, the compiler is able in most cases to deduce the template argument from the arguments
to the function call. In the first call above, the arguments are both of type int, so the compiler can deduce that we want
int as the template argument. Similarly, the arguments are both of type double in the second call, so the compiler
can deduce we want double. Thus, we can leave off the explicit template arguments:

int main() {
int i1 = 3;
int i2 = -3;
cout << max(i1, i2) << endl; // deduced as max<int>(i1, i2)
cout << max(3.1, 7.5) << endl; // deduced as max<double>(3.1, 7.5)

}

The max() function template can only be applied to a type that supports the > operator. If we try to call it on objects
that don’t support the operator, the result is a compile error:

int main() {
Duck d1("Donald");
Duck d2("Scrooge");
Duck best_duck = max(d1, d2);
cout << best_duck.get_name() << " wins!" << endl;

}

This results in an error like the following:

main.cpp: In instantiation of 'T max(const T&, const T&) [with T = Duck]':
main.cpp:20:30: required from here
main.cpp:14:17: error: no match for 'operator>' (operand types are 'const Duck' and

(continues on next page)

4 Depending on the compiler and what headers are included, we may have to tell the compiler that we intend to use our max() function template
rather than the one in the standard library. We can do so by using the scope-resolution operator with nothing to the left: ::max<double>(3.1,
7.5).

23.2. Parametric Polymorphism 142

Programming and Data Structures, Release 0.3

(continued from previous page)

→˓'const Duck')
return value2 > value1 ? value2 : value1;

~~~~~~~^~~~~~~~

The offending line of code is the one marked as “required from here” – it is the line that attempts to call max() on two
Duck objects. The compiler actually instantiates max<Duck>(), but the resulting instantiation produces errors when
the compiler tries to compile it.

23.2.2 Compiling Templates

We saw previously that the C++ compiler only needs access to declarations when compiling code that uses a class or a
function defined in some other source file. However, this is not the case for class and function templates. The compiler
must actually instantiate the definitions for each set of template arguments, so it must have access to the full definition
of a template.

To provide the compiler with access to the full definition of a template wherever it is used, we must arrange for the
header file to contain the full definition. We can just define the template directly in the header file itself; it is still good
practice to separate the declarations from the definitions for the benefit of anyone using our code.

// max.hpp

// EFFECTS: Returns the maximum of value1 and value2.
template <typename T>
T max(const T &value1, const T &value2);

...

template <typename T>
T max(const T &value1, const T &value2) {
return value2 > value1 ? value2 : value1;

}

A better organization is to separate the definitions into their own file; common convention is to use a suffix like .tpp
for this file. We can then use a #include directive to pull the code into the header file:

// max.hpp

// EFFECTS: Returns the maximum of value1 and value2.
template <typename T>
T max(const T &value1, const T &value2);

#include "max.tpp"

// max.tpp

template <typename T>
T max(const T &value1, const T &value2) {
return value2 > value1 ? value2 : value1;

}

Code that uses the max module would then just #include "max.hpp", which would transitively include max.tpp.

23.2. Parametric Polymorphism 143



Programming and Data Structures, Release 0.3

23.2.3 Include Guards

In complex programs, it is often the case that a single file inadvertently #includes the same header file more than once.
For instance, it may be that module A depends on module B and thus includes its header. Then module C depends on
both A and B, so it includes both their headers. This results in module C including B’s header twice, which can cause
compiler errors that a function or a class is defined more than once.

To avoid problems with a header being included more than once, headers generally have include guards that arrange
for the compiler to ignore the code if the header is included a second time. The following is an example of include
guards:

#ifndef MAX_HPP
#define MAX_HPP

// max.hpp

// EFFECTS: Returns the maximum of value1 and value2.
template <typename T>
T max(const T &value1, const T &value2);

#include "max.tpp"

#endif /* MAX_HPP */

The #ifndef and #define directives are the opening of the include guard, and the #endif closes it. The code within
is ignored if the header is included again.5

23.2.4 Member-Function Templates

Defining a member function within the definition for a class template is no different than a member function within
a class. Defining a member function outside the definition of a class template differs from that of a regular class; we
must inform the compiler that the function is a member of a class template.

template <typename T>
bool UnsortedSet<T>::contains(const T &value) const {
return indexOf(value) != -1;

}

template <typename T>
void UnsortedSet<T>::insert(const T &value) {
assert(size() < MAX_SIZE);
if (!contains(value)) {
elements[num_elements] = value;
++num_elements;

}
}

Here, we must tell the compiler that contains() is a member of UnsortedSet<T>. However, before we can use the
name T, we need to introduce it with a template header. The scope of a template header is the entity that immediately
follows; thus, each member-function definition needs its own template header.

5 The #ifndef checks whether the macro MAX_HPP is defined. If not, the compiler processes the code between the #ifndef and the #endif.
The #define introduces a definition for MAX_HPP. The next time the header is included, MAX_HPP is defined, so the #ifndef becomes false, and
the compiler ignores the code between the #ifndef and #endif.

A widely supported but nonstandard alternative is #pragma once, which need only be placed at the top of file.

23.2. Parametric Polymorphism 144



Programming and Data Structures, Release 0.3

23.2.5 Insertion-Operator Template

Now that we have an UnorderedSet class template, we can write an insertion operator that works on any instantiation
by defining it as a function template:

template <typename T>
std::ostream & operator<<(std::ostream &os, const UnsortedSet<T> &set) {
set.print(os);
return os;

}

The function template is parameterized by the element type of an UnorderedSet, and we use the template parameter
as part of the type for the second function parameter. The compiler is able to deduce the template argument when we
insert a set into a stream:

UnsortedSet<char> char_set;
char_set.insert('e');
char_set.insert('a');
char_set.insert('e');
cout << char_set << endl; // prints { e, a }

23.2.6 Another Example

Let us write a function template that copies elements from an array into a set. We would like to use it as follows:

int main() {
UnsortedSet<int> set1;
int arr1[4] = { 1, 2, 3, 2 };
fill_from_array(set1, arr1, 4);
cout << set1 << endl; // prints { 1, 2, 3 }

UnsortedSet<char> set2;
char arr2[3] = { 'a', 'b', 'a' }; // prints { a, b }
fill_from_array(set2, arr2, 3);

}

The fill_from_array() template must be parameterized by the element type, and we use that type for both the set
and array function parameters:

template <typename T>
void fill_from_array(UnsortedSet<T> &set, const T *arr, int size) {
for (int i = 0; i < size; ++i) {
set.insert(arr[i]);

}
}

The set is passed by reference, to avoid making a copy and to allow the function to modify the original set. The array
decays into a pointer when it is passed, and we declare the pointer as a pointer to const, since we do not need to modify
the array elements. The body of the function template just iterates over the array, inserting each element into the set;
the set ignores insertion of duplicate values, so there is no need to check whether the set already contains a value before
inserting it.

23.2. Parametric Polymorphism 145



Programming and Data Structures, Release 0.3

23.3 Static vs. Dynamic Polymorphism

The template mechanism gives us parametric polymorphism; a template type parameter can take on the form of any
type. The compiler instantiates the code at compile time, so we also refer to this as static polymorphism. Compare this
with subtype polymorphism, where the program resolves virtual function calls at runtime; we therefore use dynamic
polymorphism to also refer to it.

In designing an ADT, we have the choice of static polymorphism, dynamic polymorphism, or both. For instance,
SortedSet and UnsortedSet share the same interface, so we could define a common base interface and make use
of dynamic binding. However, dynamic polymorphism comes with a runtime performance cost; a virtual function
call generally requires two extra pointer dereferences compared to a non-virtual call. For a container, a program may
make many calls to insert items, remove items, check whether an item is in the container, and so on. Thus, the general
convention in C++ is to avoid dynamic polymorphism with containers.

Another reason why dynamic polymorphism is not a good fit for a container is that we usually make the decision of
which container to use when we write our code, not when we run it. However, it is still good practice to write our code
in such a way that we can easily change the container type we are using. Ideally, we would have a single location in
our code that needs to change if we decide to use something else. We’ve seen this pattern already when it comes to
a value that is used in many places: define a constant or variable, and use the associated name rather than the value
directly. Thus, introducing a new name for an entity is a powerful form of abstraction, allowing us to avoid hardcoding
the entity everywhere in our code. C++ gives us this capability for types with type aliases.

23.3.1 Type Aliases

A type alias is a new name for an existing type. We can introduce a type alias with a using declaration:

using UnsortedIntSet = UnsortedSet<int>;

The syntax for introducing a type alias with a using declaration is the using keyword, followed by the name we want
to introduce, the = symbol, and the existing type that we want the name to alias. The example above introduces the
name UnsortedIntSet as an alias for the type UnsortedSet<int>.

A simple alias can also be defined with the typedef keyword:

typedef UnsortedSet<int> UnsortedIntSet;

The syntax is in the reverse order of a using declaration: the existing type first, then the new alias.

A using declaration (but not a typedef) can also define an alias template, which introduces a new name that is a template
for a set of types. The following is an example:

template <typename T>
using Set = UnsortedSet<T>;

Similar to any template, we introduce an alias template by placing a template header with the requisite parameters
before the using declaration. Then we can use Set in the same way we would a class template:

template <typename T>
using Set = UnsortedSet<T>;

template <typename T>
void fill_from_array(Set<T> &set, const T *arr, int n);

int main() {
(continues on next page)

23.3. Static vs. Dynamic Polymorphism 146



Programming and Data Structures, Release 0.3

(continued from previous page)

Set<int> set1;
int arr1[4] = { 1, 2, 3, 2 };
fill_from_array(set1, arr1, 4);

Set<char> set2;
char arr2[3] = { 'a', 'b', 'a' };
fill_from_array(set2, arr2, 3);

}

The compiler treats Set<int> and Set<char> as UnsortedSet<int> and UnsortedSet<char>, since Set is an
alias for UnsortedSet. If we decide to use sorted sets instead, there is just one place we need to change:

template <typename T>
using Set = SortedSet<T>;

Now the compiler will treat Set<int> and Set<char> as SortedSet<int> and SortedSet<char>.

23.3.2 The Factory Pattern

With dynamic polymorphism, we can defer the decision of which derived class to use until runtime. For example, the
following code asks the user for what color bird they want, then calls a factory function to create the actual object:

int main() {
string color;
cin >> color;
Bird *bird = Bird_factory(color, "Myrtle");
cout << "Bird " << bird->get_name() << " is " << bird->get_age()

<< " and says: " << bird->talk() << endl;
delete bird;

cin >> color;
bird = Bird_factory(color, "Heihei");
cout << "Bird " << bird->get_name() << " is " << bird->get_age()

<< " and says: " << bird->talk() << endl;
delete bird;

}

The factory function creates an object of the appropriate derived type and returns a pointer to it. It cannot create the
object in local memory – a local object dies when the function that created it returns, so it would not live past the call
to Bird_factory(). Instead, we create it in dynamic memory with the new operator:

Bird * Bird_factory(const string &color, const string &name) {
if (color == "blue") {
return new BlueBird(name);

} else if (color == "black") {
return new Raven(name);

}
...

}

We then use the delete operator on the object’s address when we no longer need it.

We will start looking at dynamic memory in more detail next time.

23.3. Static vs. Dynamic Polymorphism 147



Programming and Data Structures, Release 0.3

23.3.3 Liskov Substitution Principle

When designing an inheritance hierarchy, an important property is substitutability of a derived-class object for a base-
class one. This notion is formalized by the Liskov substitution principle, which states that in order for type 𝑆 to be a
subtype of type 𝑇 , the following requirement must be met:

Any property of objects of type 𝑇 should also be a property of objects of type 𝑆.

—Barbara Liskov, MIT

This implies that in any code that depends on 𝑇 ’s interface, an object of type 𝑆 can be substituted without any unde-
sirable effects. If the requirement above is not satisfied, 𝑆 would be a derived type of 𝑇 but not a subtype.

A classic example is a ToyDuck class that derives from Duck:

class ToyDuck : public Duck {
...

public:
// EFFECTS: Prints out quack if battery level >= 10.
void talk() const override {
if (battery_level >= 10) {
cout << "quack" << endl;
--battery_level;

}
}

};

Code that uses a Duckmay assume that a quacking noise gets printed out each time talk() is called. A ToyDuckwould
violate this expectation, since it does not print anything out if the ToyDuck has insufficient battery. Thus, ToyDuck is
a derived type of Duck, but not a subtype.

23.3. Static vs. Dynamic Polymorphism 148



Programming and Data Structures, Release 0.3

Figure 23.1: Liskov substitution principle. Credit: Derick Bailey, retrieved from Stack Overflow

23.3. Static vs. Dynamic Polymorphism 149

https://lostechies.com/derickbailey/2009/02/11/solid-development-principles-in-motivational-pictures/
https://stackoverflow.com/questions/56860/what-is-an-example-of-the-liskov-substitution-principle/44913313


CHAPTER

TWENTYFOUR

MEMORY MODELS AND DYNAMIC MEMORY

Recall that an object is a piece of data in memory, located at some address in memory. An object also has a storage
duration that determines its lifetime. In this course, we consider three storage durations:

• static: the lifetime is essentially the whole program

• automatic (also called local): the lifetime is tied to a particular scope, such as a block of code

• dynamic: the object is explicitly created and destroyed by the programmer

The first two durations are controlled by the compiler, and an object with static or automatic scope is associated with
a variable. Objects with dynamic storage are managed by the programmer, and they are not directly associated with
variables.

The following variables refer to objects with static storage duration:

• global variables1

• static member variables

• static local variables

The lifetime of these objects is essentially the whole program, so they can be used at any point in time in the program.2

24.1 Static Local Variables

We have already seen global and static member variables. A static local variable is a local variable declared with the
static keyword. Rather than living in the activation record for a function call, it is located in the same region of
memory as other variables with static storage duration, and there is one copy of each static local variable in the entire
program. The following is an example:

int count_calls() {
static int count = 0;
return ++count;

}

int main() {
cout << count_calls() << endl; // prints 1
cout << count_calls() << endl; // prints 2
cout << count_calls() << endl; // prints 3
cout << count_calls() << endl; // prints 4

}

1 Also those defined at namespace scope.
2 Initialization in C++ is rather complicated, and the details are beyond the scope of this course. A relatively safe assumption is that variables

with static storage duration can be initialized in any order before main() is run, but that they have all been initialized by the time main() is called.

150

https://en.cppreference.com/w/cpp/language/initialization


Programming and Data Structures, Release 0.3

The count static local variable is initialized to 0, so its value is 0 the first time count_calls() is called. The call
increments count and returns the new value of 1. The next time count_calls() is called, count has value 1. It gets
incremented again, and the call returns 2. And so on. Thus, all calls to count_calls() use the same count object,
unlike a non-static local variable, where each call would get its own object.

24.2 Automatic Storage Duration

Function parameters and local variables have automatic storage duration, also called local storage duration. The lifetime
of the associated object corresponds to the variable’s scope, the region of code where it is valid to refer to the variable.
The scope of a variable begins at its point of declaration and ends at the end of the scope region in which it is defined.
A scope region can be the body of a function, a whole loop or conditional, the body of a loop or conditional, or just a
plain block denoted by curly braces. For example, consider the following code:

void func(int x) {
for (int i = 2; i < 10; ++i) {
string s = " cats";
cout << i << s << endl;

} // end scope of i, s

int y = 10;

{
int z = -3;
cout << x << " " << y << " " << z << endl;

} // end scope of z

} // end scope of x, y

The variables fall into the following categories;

• The scope of a parameter is the entire function body. Thus, the lifetime of the object associated with x begins
when the function is called and ends when the function returns.

• The scope of a variable declared in a loop header is the entire loop. Thus, the lifetime of the object i begins
when the loop starts and ends when the loop exits.

• The scope of a variable declared within a block is from its point of declaration to the end of the block. The
lifetime of s begins when its initialization runs and ends at the end of a loop iteration – a new object associated
with s is created in each iteration. The lifetime of y also begins when its initialization runs, and it ends when
the function returns. Lastly, the lifetime of z starts when its declaration is run and ends when the code exits the
block containing z‘s declaration.

Scope generally prevents us from using a local variable beyond the lifetime of its associated object. However, indirection
through a pointer or reference can circumvent this protection. The following is an example:

int *func1() {
int x = 3;
return &x;

}

void func2() {
int y = 5;

}

(continues on next page)

24.2. Automatic Storage Duration 151



Programming and Data Structures, Release 0.3

(continued from previous page)

int main() {
int *z = func1();
func2();
assert(*z == 3); // ASSERTION FAILURE

}

Stack

main

func1
0x1008 3 x

0x1000 ? z

Stack

main
0x1000 ? z

Stack

main
0x1000 0x1008 z

Stack

main

func2
0x1008 5 y

0x1000 0x1008 z

Stack

main
0x1000 0x1008 z

Figure 24.1: Returning the address of a local variable results in a pointer that refers to a dead object. Dereferencing
the pointer produces undefined behavior.

When the program calls func1(), it places the activation record on the stack, with x inside of the activation record. The
call returns the address of x, which gets stored in z. However, when the call returns, its activation record is destroyed,
so z is actually pointing at a dead object. The memory for that activation record can then be reused for something else
– in the case of Figure 24.1, the activation record for func2(), placing y at the same address used for x. Dereferencing
z results in undefined behavior; in this case, since the memory was reused for y, dereferencing z results in the value 5,
not 3.

There are cases, however, where we want an object’s lifetime to last beyond the execution of the function that creates
it. Previously, we saw the factory pattern, where a factory function creates an object and returns its address. We used
the new operator to decouple the lifetime of the object from the duration of the function call:

Bird * Bird_factory(const string &color, const string &name) {
if (color == "blue") {
return new BlueBird(name);

} else if (color == "black") {
return new Raven(name);

}
...

}

24.3 Address Space

The new operator creates an object not in some activation record, but in an independent region of memory called the
heap. The stack and heap are two of the segments that make up a program’s address space, which is the total memory
associated with a running program. Figure 24.2 depicts a typical layout for an address space.

The text segment contains the actual machine instructions representing the program’s code, and it is often placed at the
bottom of a program’s address space. (Nothing is located at address 0, since that is the representation used for a null
pointer.) Space for objects in static storage generally is located above the text segment, followed by the heap. The latter
can grow or shrink as objects in dynamic memory are created and destroyed; in most implementations the heap grows
upward as needed, into the empty space between the heap and stack. The stack starts at the top of the address space,
and it grows downward when a new activation record is created.

24.3. Address Space 152



Programming and Data Structures, Release 0.3

Stack
(grows down)

THE BIG VOID

Heap
(grows up)

Static Storage
(Fixed size)

Text
(The program)

Address MAX

Address 0

Figure 24.2: The address space of a program.

24.4 The new and delete Operators

The syntax of a new expression consists of the new keyword, followed by a type, followed by an optional initialization
using parentheses or curly braces. The following are examples:

// default initialization
new int;
// value initialization
new int();
new int{};
// explicit initialization
new int(3);
new int{3};

If no initialization is provided, the newly created object is default initialized. For an atomic type, nothing is done, so
the object’s value is whatever is already there in memory. For a class type, the default constructor is called.

Empty parentheses or curly braces result in value initialization. For an atomic type, the object is initialized to a zero
value. For a class type, the default constructor is called.

Explicit initialization can be done by supplying values in parentheses or curly braces. For atomic types, the value is
used to initialize the object. For C-style ADTs, curly braces must be used, and the values within are used to initialize
the member variables. For C++ ADTs, both parentheses and curly braces invoke a constructor with the values within
as arguments.

A new expression does the following:

• Allocates space for an object of the given type on the heap.

24.4. The new and delete Operators 153



Programming and Data Structures, Release 0.3

• Initializes the object according to the given initialization expression.

• Evaluates to the address of the newly created object.

The address is how we keep track of the new object; it is not associated with a variable name, so we have to store the
address somewhere to be able to use the object.

int main() {
int *ptr = new int(3);
cout << *ptr << endl; // prints 3
...

}

Stack

main
0x1000 0x9994 ptr

0x9994 3

Heap

Figure 24.3: A new expression creates an object on the heap and evaluates to its address.

The newly created object’s lifetime is not tied to a particular scope. Rather, it begins when the new expression is
evaluated and ends when the delete operator is applied to the object’s address.

delete ptr;

Here, the operand to delete evaluates to the address value contained in ptr. The delete operator follows this address
and destroys the object at that address.

Stack

main
0x1000 0x9994 ptr

0x9994 3

Heap

Figure 24.4: Applying delete to an address in dynamic memory kills the object that lives at that address.

The expression delete ptr; does not kill the ptr object – it is a local variable, and its lifetime ends when it goes out
of scope. Rather, delete follows the pointer to the object it is pointing to and kills the latter. We can continue to use
the pointer object itself:

int main() {
int *ptr = new int(3);
cout << *ptr << endl; // prints 3
delete ptr; // kills *ptr, not ptr itself
ptr = new int(-1);
cout << *ptr << endl; // prints -1
delete ptr; // kills *ptr, not ptr itself

} // ptr dies here, since it is going out of scope

24.4. The new and delete Operators 154



Programming and Data Structures, Release 0.3

24.5 Dynamic Arrays

We saw previously that local and member-variable arrays must have a size that is known at compile time, so the compiler
can reason about the sizes of activation records and class-type objects. This restriction does not apply to dynamic arrays
– since they are located on the heap rather than in an activation record or directly within a class-type object, the compiler
does not need to know their size.

The syntax for creating a dynamic array is the new keyword, an element type, square brackets containing an integer
expression, and an optional initializer list. The expression within the square brackets need not be a compile-time
constant:

int main() {
cout << "How many elements? ";
int count;
cin >> count;
int *arr = new int[count];
for (int i = 0; i < count; ++i) {
arr[i] = i;

}
...

}

A new array expression does the following:

• Allocates space for an array of the given number of elements on the heap.

• Initializes the array elements according to the given initialization expression. If no initialization is provided, the
elements are default initialized.

• Evaluates to the address of the first element of the newly created array.

Previously, we saw that a local or member-variable array decays to a pointer to its first element when the array’s value
is required. A dynamic array immediately decays as part of the new array expression, so the expression evaluates to the
address of the first element.

Figure 24.5 illustrates memory at the end of the code snippet above.

Stack

main

0x1000 5 count

0x9990 4

Heap

0x998c 3

0x9988 2

0x9984 1

0x9980 0

0x1004 0x9980 arr

Figure 24.5: A new array expression creates an array on the heap and evaluates to the address of its first element.

As with any pointer into an array, we can use the subscript operator to index into the array:

arr[i] = i;

This is equivalent to:

24.5. Dynamic Arrays 155



Programming and Data Structures, Release 0.3

*(arr + i) = i;

The lifetime of a dynamic array begins when it is created by a new array expression. It ends when the array-deletion
operator delete[] is applied to the address of the array’s first element:

delete[] arr;

Though the type of arr is int *, we cannot use the regular delete operator on it; instead, we must inform the program
with delete[] that we intend to delete a dynamic array, not just a single object on its own.

Using the wrong deletion operator results in undefined behavior. It is also undefined behavior to apply delete[] to
anything other than the address of the first element of a dynamic array.

We cannot delete an individual element of an array. The lifetime of an array’s elements are tied to the lifetime of the
array as a whole; they are born when the array as a whole is born and die when the array dies.

24.6 Lifetime of Class-Type Objects

When a class-type object is created, a constructor is run to initialize it.3 When a class-type object dies, its destructor
is run to clean up its data. For a local object, this is when the associated variable goes out of scope. For a dynamic
object, it is when delete is applied to its address.

If a class-type object is an element of an array, it dies when the array dies, so its destructor runs when the array is dying.

The lifetime of member variables of a class-type object is tied to the lifetime of the object as a whole. When the object
dies, its members die as well; if they are of class-type themselves, their destructors run. Specifically, the members
of a class-type object are automatically destroyed after the destructor of the object is run, in reverse order of their
declarations. The following is an example:

class M {
public:

M(const string &s) : mstr(s) {
cout << "M ctor: " << mstr << endl;

}

~M() {
cout << "M dtor: " << mstr << endl;

}

private:
string mstr;

};

class C {
public:

C(const string &s) : cstr(s), m1(s + ".m1"), m2(s + ".m2") {
cout << "C ctor: " << cstr << endl;

}

~C() {
cout << "C dtor: " << cstr << endl;

}
(continues on next page)

3 The exception is aggregates (C-style ADTs) that are initialized directly with an initializer list.

24.6. Lifetime of Class-Type Objects 156



Programming and Data Structures, Release 0.3

(continued from previous page)

private:
string cstr;
M m1;
M m2;

};

int main() {
C c1("c1");
C *cptr = new C("(*cptr)");
C c2("c2");
delete cptr;

}

This prints the following when run:

M ctor: c1.m1
M ctor: c1.m2
C ctor: c1
M ctor: (*cptr).m1
M ctor: (*cptr).m2
C ctor: (*cptr)
M ctor: c2.m1
M ctor: c2.m2
C ctor: c2
C dtor: (*cptr)
M dtor: (*cptr).m2
M dtor: (*cptr).m1
C dtor: c2
M dtor: c2.m2
M dtor: c2.m1
C dtor: c1
M dtor: c1.m2
M dtor: c1.m1

When main() is run, the declaration of c1 creates a C object and calls its constructor. The latter first initializes the
members m1 and m2 in order before running the body of C‘s constructor. Thus, we get the output:

M ctor: c1.m1
M ctor: c1.m2
C ctor: c1

The code then constructs a C object in dynamic memory, resulting in:

M ctor: (*cptr).m1
M ctor: (*cptr).m2
C ctor: (*cptr)

It then creates another local C object:

M ctor: c2.m1
M ctor: c2.m2
C ctor: c2

24.6. Lifetime of Class-Type Objects 157



Programming and Data Structures, Release 0.3

The program proceeds to apply delete to the address of the dynamic C object, which causes its destructor to run. The
body of ~C() runs first, and then the members are destroyed in reverse order:

C dtor: (*cptr)
M dtor: (*cptr).m2
M dtor: (*cptr).m1

The string cstr is also destroyed, since it is a class-type object, and it is destroyed after m1. However, the string
destructor doesn’t print anything out, so we do not see it in the output.

The order in which the bodies of the destructors are run is the reverse of the constructors – we get the same “socks-
and-shoes” ordering that we saw with base-class and derived-class constructors and destructors.

When execution reaches the end of main(), both c1 and c2 go out of scope, so their associated objects are destroyed
in reverse order of construction. Thus, c2 dies first, followed by c1:

C dtor: c2
M dtor: c2.m2
M dtor: c2.m1
C dtor: c1
M dtor: c1.m2
M dtor: c1.m1

24.7 Dynamic-Memory Errors

The compiler manages objects with static and automatic storage duration, and the management of subobjects is di-
rectly tied to the objects that contain them. Dynamic objects, on the other hand, must be explicitly managed by the
programmer. Improper management can result in many kinds of errors that are unique to dynamic memory.

The most common error with dynamic memory is a memory leak, where a program is no longer in need of a dynamic
object but has failed to delete it. The usual cause of a memory leak is orphaned memory, when we lose track of a
dynamic object, inevitably resulting in a leak. The following is an example:

void func1() {
double *ptr = new double(3.0);

}

int main() {
func1();
...

}

When func1() is called, it allocates a dynamic object and stores its address in the local variable ptr. When func1()
returns, its activation record is destroyed and ptr dies. Thus, the program no longer knows the address of the dynamic
object that func1() created – the object has been orphaned, and there is no way to get to it to delete it. Thus, the
corresponding memory is leaked.

The solution is to apply delete to the address before we lose track of it:

void func1() {
double *ptr = new double(3.0);
delete ptr;

}

(continues on next page)

24.7. Dynamic-Memory Errors 158



Programming and Data Structures, Release 0.3

(continued from previous page)

int main() {
func1();
...

}

Memory leaks result in a program using more memory than it needs. This is problematic on systems that run more
than one program at once, which is the case for most machines – it reduces the amount of physical memory available
to the other programs, potentially slowing them down. It is our responsibility as programmers to write well-behaved
programs that avoid memory leaks.

Another memory error is a double free, also called a double delete, where a program deletes the same object more than
once:

void func2() {
int x = 0;
int *ptr1 = new int(1);
int *ptr2 = new int(2);
ptr2 = ptr1;

delete ptr1;
delete ptr2;

}

Here, the second dynamic int is orphaned by the assignment ptr2 = ptr1. The program then applies delete to the
same address twice; this is a double free, which results in undefined behavior.

Another category of errors is a bad delete, which is when a delete operator is applied to the wrong kind of address.
This includes applying delete to the address of a non-dynamic object and applying delete[] to anything other than
the address of the first element in a dynamic array. The result of a bad delete is undefined behavior.

Deleting a dynamic object is not enough to avoid a memory error. If we keep around its address, we have a dangling
pointer – a pointer that points to a dead object. If we then dereference the pointer, we get undefined behavior. The
following is an example:

void func3() {
int *ptr = new int(42);
cout << *ptr << endl;
delete ptr;

int *ptr2 = new int(3);
cout << *ptr << endl; // oops
delete ptr2;

}

In this code, we have accidentally dereferenced ptr after applying delete to it. The object it is pointing at is dead,
and the memory may have been reused for something else.

We can avoid dangling pointers by restricting the scope of a pointer to the region of code where it is expected to be
used4. One way to do so is by moving that code into its own block, as in the following:

4 An alternative strategy is to set a pointer to null after applying delete to it. Dereferencing a null pointer still results in undefined behavior, but
implementations almost universally detect this, resulting in a segmentation fault or a bad access. However, there are two downsides to this strategy.
First, it complicates the code, making it harder to read and maintain. Second, deleting a null pointer is valid in C++ – it has no effect. This means
that if we set a pointer to null and then subsequently delete it a second time, we will not encounter an error. However, this may hide a logic bug –
perhaps we expected the pointer to still be alive even though it was deleted earlier, in which case we would prefer a visible error from a double delete
rather the code passing our test cases. For these reasons, it is better to rely on scoping to detect dangling pointers at compile time rather than relying
on runtime checks.

24.7. Dynamic-Memory Errors 159



Programming and Data Structures, Release 0.3

void func3() {
{
int *ptr = new int(42);
cout << *ptr << endl;
delete ptr;

}

int *ptr2 = new int(3);
cout << *ptr << endl; // oops
delete ptr2;

}

Now ptr is no longer in scope when we mistakenly access it, and the compiler will detect this and give us a meaningful
error.

24.8 Uses for Dynamic Memory

Dynamic memory adds another use for indirection through a pointer or reference. Since a dynamic object is not directly
associated with a variable, we are forced to interact with the object indirectly.

We have already seen two uses for dynamic memory:

• The factory pattern, where a factory function creates objects of specific derived types based on runtime informa-
tion.

• Dynamic arrays, where the size can be determined at runtime.

The factory pattern is an example of decoupling the lifetime of an object from a particular scope. Next time, we will
make use of dynamic arrays to build a container ADT without a fixed maximum capacity; we will do so by decoupling
the storage for the container’s elements from that of the container itself. However, we will see that this results in
nontrivial memory-management issues, and we will learn how to address them.

24.8. Uses for Dynamic Memory 160



CHAPTER

TWENTYFIVE

MANAGING DYNAMIC MEMORY

We saw previously that the compiler and runtime automatically manage the lifetime of objects associated with static,
local, and member variables. For instance, if we declare an array as a local variable, it will die when the variable goes
out of scope:

int main() {
int arr[10];

for (int i = 0; i < 10; ++i) {
arr[i] = i;

}

...
} // arr dies here

An automatically managed array must have a size that is known at compile time, so that the compiler can properly
manage it. The compiler does not automatically manage dynamic arrays:

int main() {
int size;
cout << "Enter a size:" << endl;
cin >> size;

int *darr = new int[size];

for (int i = 0; i < size; ++i) {
darr[i] = i;

}

...
} // the pointer darr dies here, but not the memory it is pointing to

The code above contains a memory leak, since we did not delete the memory we dynamically allocated.

We also have seen that when a class-type object dies, its destructor is run:

class C {
public:

~C() {
cout << "C dtor" << endl;

}
};

(continues on next page)

161



Programming and Data Structures, Release 0.3

(continued from previous page)

int main() {
C c;

...

cout << "end of c's scope" << endl;
} // c dies here

This prints out the following when run:

end of c's scope
C dtor

Here, the compiler automatically manages the lifetime of the object associated with the local variable c, and since it is
of class type, its destructor is run when the object dies.

25.1 RAII

We can leverage automatic memory management and destructors by wrapping up the management of a dynamic re-
source in a class. In particular, we will arrange for the constructor of a class-type object to allocate a resource and for
the destructor to release that resource. Doing so ties the management of the resource to the lifetime of the class-type
object. This strategy is called resource acquisition is initialization (RAII), and it is also known as scope-based resource
management.

The following is a class that manages a dynamic array:

class DynamicIntArray {
public:
DynamicIntArray(int size_in)
: elements(new int[size_in]), num_elements(size_in) {}

~DynamicIntArray() {
delete[] elements;

}

int size() const {
return num_elements;

}

int & operator[](int i) {
return elements[i];

}

const int & operator[](int i) const {
return elements[i];

}

private:
int *elements;
int num_elements;

};

25.1. RAII 162



Programming and Data Structures, Release 0.3

When a DynamicIntArray object is created, it allocates a dynamic array of the specified size. The subscript operator
is overloaded to index into the array. There are two overloads, one that returns a modifiable element by reference if
applied to a non-const DynamicIntArray, and another that returns a non-modifiable element by reference to const
when applied to a const DynamicIntArray. The class also provides a size() member function to query the size of
the array. When the DynamicIntArray object dies, it deletes the dynamic array that it had allocated, so that memory
does not leak.

The following is an example that uses DynamicIntArray:

int main() {
int size;
cout << "Enter a size:" << endl;
cin >> size;

DynamicIntArray darr(size); // internally allocates an array

for (int i = 0; i < darr.size(); ++i) { // size() member function
darr[i] = i; // overloaded subscript

}

...
} // darr dies here, causing its destructor to run and free the

// array it allocated

When the object associated with darr is created, it allocates a dynamic array, storing the address of the first element
in its elements member.

Stack

DynamicIntArray

0x1008 5 num_elements

0x1000 0x9980 elements

main

darr
0x9990 4

Heap

0x998c 3

0x9988 2

0x9984 1

0x9980 0

Figure 25.1: A DynamicIntArray object manages an array in dynamic memory.

When darr goes out of scope, its associated object dies, and the DynamicIntArray destructor is run. The destructor
deletes the array, cleaning up the resource that it was using.

Thus, with the RAII pattern, we have leveraged automatic memory management and a class-type object to successfully
manage a dynamic array.

25.1. RAII 163



Programming and Data Structures, Release 0.3

Stack

0x1008 5 num_elements

0x1000 0x9980 elements darr
0x9990 4

Heap

0x998c 3

0x9988 2

0x9984 1

0x9980 0
~DynamicIntArray()

DynamicIntArray

main

Figure 25.2: The destructor for DynamicIntArray deletes the array that it is managing.

25.2 Growable Set

Let’s use a similar strategy to write a new version of UnsortedSet without a fixed-capacity limitation. We allow the
set to have an arbitrary number of elements by decoupling the storage of the elements from that of the set object, using
dynamic memory for the former.

We modify the data representation so that the member variable elements is now a pointer to the first element of a
dynamic array. We also add a capacity member variable to keep track of the size of that dynamic array. The resulting
class definition for UnsortedSet is as follows:

template <typename T>
class UnsortedSet {
public:
// EFFECTS: Initializes this set to be empty.
UnsortedSet();

// MODIFIES: *this
// EFFECTS: Adds value to the set, if it isn't already in the set.
void insert(const T &value);

// MODIFIES: *this
// EFFECTS: Removes value from the set, if it is in the set.
void remove(const T &value);

// EFFECTS: Returns whether value is in the set.
bool contains(const T &value) const;

// EFFECTS: Returns the number of elements.
int size() const;

// EFFECTS: Prints out the set in an arbitrary order.
void print(std::ostream &os) const;

private:
// MODIFIES: *this
// EFFECTS: Doubles the capacity of this set.
void grow();

(continues on next page)

25.2. Growable Set 164



Programming and Data Structures, Release 0.3

(continued from previous page)

// Initial size of a set.
static const int INITIAL_SIZE = 5;

T *elements;
int capacity;
int num_elements;
// INVARIANTS:
// elements points to the sole dynamic array associated with this set
// capacity is the size of the array that elements points to
// 0 <= num_elements && num_elements <= capacity
// the first num_elements items in elements are the items in the set
// the first num_elements items in elements contain no duplicates

};

We have added two representation invariants:

• elements points to the start of the sole dynamic array associated with the set, and each set has its own dynamic
array

• capacity is the size of dynamic array that elements points to

We have also added two private members:

• grow() doubles the capacity of the set

• INITIAL_SIZE is a constant whose value is the initial size of a set

The following is the new constructor for UnsortedSet:

template <typename T>
UnsortedSet<T>::UnsortedSet()
: elements(new T[INITIAL_SIZE]),
capacity(INITIAL_SIZE),
num_elements(0) {}

The constructor allocates a dynamic array of size INITIAL_SIZE and stores the address of its first element in elements.
We satisfy the remaining representation invariants by setting capacity to INITIAL_SIZE and num_elements to 0.

We modify insert() so that if the set is out of space, it calls the grow() member function to increase the available
capacity:

template <typename T>
void UnsortedSet<T>::insert(const T &value) {
if (contains(value)) {
return;

}
if (num_elements == capacity) {
grow(); // double the capacity;

}
elements[num_elements] = value;
++num_elements;

}

The grow() member function doubles the capacity of the set. In C++, an array has a fixed size, even if it is dynamic,
so we cannot change the size of the existing elements array. Instead, we allocate a new dynamic array, copy over the
elements, and discard the old array, as shown in Figure 25.3.

25.2. Growable Set 165



Programming and Data Structures, Release 0.3

Stack

UnsortedSet<int>

0x100c 5 num_elements

0x1008 5 capacity

main

set

Heap

0x1000 elements

7 6 3 5 1

0 1 2 3 4

7 6 3 5 1
0 1 2 3 4 5 6 7 8 9

10

Figure 25.3: The grow() operation creates a new, larger array, copies the elements to the new array, and deletes the
old array.

The following implements this:

template <typename T>
void UnsortedSet<T>::grow() {

T *new_arr = new T[2 * capacity]; // allocate a new array that is twice as big
for (int i = 0; i < num_elements; ++i) { // copy the elements to the new array
new_arr[i] = elements[i];

}
capacity *= 2; // update capacity
delete[] elements; // free the old array
elements = new_arr; // set elements to point to first element of the new array

}

The function allocates a new array and deletes the old one, satisfying the invariant that there is exactly one dynamic array
associated with the set. It sets elements to point to that array and updates capacity to be the array’s size. Copying
the elements to the new array satisfies the representation invariant that the first num_elements items in elements are
the ones in the set.

The grow() operation demonstrates the power of indirection. By decoupling the storage for the elements from that of
the UnsortedSet object, we have also decoupled their lifetimes. Thus, if the old storage no longer meets our needs,
we can replace it with different storage that does, killing the old array and creating a new one. Compare this to storing
the array directly within the memory for the set, which both limits the array to be of a fixed size and ties its lifetime to
that of the set.

Since UnsortedSet now manages the resource of dynamic memory, we need to write a destructor that frees the
resource when the UnsortedSet object dies.

Before we proceed to write the destructor, a clarification is in order. The destructor does not cause the object to die.
The object dies when its lifetime ends:

• if it is associated with a local variable, when the variable goes out of scope

• if it is associated with a static variable, when the program ends

• if it is a member of a class-type object, when the latter object dies

• if it is an element of an array, when the array dies

• if it is a dynamic object, when delete is applied to its address

The destructor merely runs when the object dies – it gives the object a chance to put its affairs in order while it is on
its deathbed. If the object is managing dynamic memory, it needs to release that memory.

25.2. Growable Set 166



Programming and Data Structures, Release 0.3

template <typename T>
UnsortedSet<T>::~UnsortedSet() {
delete[] elements;

}

The representation invariant that there is exactly one dynamic array associated with each UnsortedSet ensures that
after the destructor runs, there is no longer a live array associated with the dying set.

With the destructor, we have ensured that in simple cases, UnsortedSet properly manages memory. However, there
is one case that we missed: copying a set. Consider the following code:

int main() {
UnsortedSet<int> s1;
for (int i = 0; i < 5; ++i) {
s1.insert(i);

}

UnsortedSet<int> s2 = s1;
cout << s1 << endl; // prints { 0, 1, 2, 3, 4 }
cout << s2 << endl; // prints { 0, 1, 2, 3, 4 }

s2.insert(5); // causes a grow

cout << s2 << endl; // prints { 0, 1, 2, 3, 4, 5 }
cout << s1 << endl; // UNDEFINED BEHAVIOR

}

The code creates a set s1 and adds five items to the set, filling it to capacity. It then creates s2 as a copy of s1; by
default, this does a member-by-member copy, so that both s1.elements and s2.elements point to the same dynamic
array. We then add an item into s2, causing it to grow and delete its old array. This is the same array that s1.elements
is pointing to, so that when we proceed to print out s1, it accesses a dead object. The result is undefined behavior.

Had we not caused a grow, there would have been a double delete when s2 and s1 die, since they would both delete the
same array. This still results in undefined behavior. The fundamental problem is that the copy violates the representation
invariant that each set has its own array. We will see how to fix this next time.

25.2. Growable Set 167



CHAPTER

TWENTYSIX

THE BIG THREE

We saw last time that copying an UnsortedSet ultimately results in undefined behavior. Before we fix the issue, we
need to understand how C++ copies class-type objects and what mechanisms it provides to control the behavior of a
copy.

By default, a copy just copies over the members one by one, as we saw when we first discussed class-type objects:

Person elise = { "Elise", 22, true };
Person tali = elise;

The result is shown in Figure 26.1.

Stack

0x1038 22 age

0x103c true is_ninja

0x1020 "Elise" name

Person

0x1018 22 age

0x1000 "Elise" name

main

tali

Person

elise

0x101c true is_ninja

Figure 26.1: The default copy behavior for a class-type object is to copy each of its members.

The code above is an example of making a copy when initializing a new object. There are several forms of syntax we
can use for initialization as a copy:

Person tali = elise;
Person tali(elise);
Person tali{elise};
Person tali = {elise};

Initialization as a copy also occurs when we pass an object by value:

168



Programming and Data Structures, Release 0.3

void func(Person p);

int main() {
Person elise = { "Elise", 22, true };
func(elise);

}

The parameter p is associated with an object that lives in the activation record for func(), and the object is initialized
when the function is called. It is initialized as a copy of the argument value elise.

Just like we can pass an object by value, we can also return an object by value, which generally makes a copy:

Person func2() {
Person elise = { "Elise", 22, true };
return elise;

}

int main() {
Person tali = func2();

}

26.1 Copy Constructor

We also previously discussed that a constructor is always called when a class-type object is created (except for C-style
ADTs when the members are initialized directly, like elise above). Copy initialization of a class-type object also
invokes a constructor, specifically the copy constructor for the class. The following is an example of explicitly defining
a copy constructor:

class Example {
public:
Example(int x_in, double y_in)
: x(x_in), y(y_in) {}

Example(const Example &other)
: x(other.x), y(other.y) {
cout << "Example copy ctor: " << x << ", " << y << endl;

}

int get_x() const {
return x;

}

double get_y() const {
return y;

}

private:
int x;
double y;

};

The second constructor above is the copy constructor, and it takes a reference to an existing object as the parameter.

26.1. Copy Constructor 169



Programming and Data Structures, Release 0.3

The parameter must be passed by reference – otherwise, a copy will be done to initialize the parameter, which itself
will invoke the copy constructor, which will call the copy constructor to initialize its parameter, and so on.

We have instrumented the copy constructor to print a message when it is called. Thus, the code

int main() {
Example e1(2, -1.3);
Example e2 = e1;

}

will print the following when run:

Example copy ctor: 2, -1.3

The program invokes the copy constructor to initialize e2 from e1.

The C++ compiler provides an implicit copy constructor if a user-defined one is not present. The implicit copy con-
structor just does a member-by-member copy, so in the case of Example, it acts like the following:

Example(const Example &other)
: x(other.x), y(other.y) {}

26.2 Assignment Operator

Assignment is another situation where an object is copied; unlike initialization, however, assignment copies into an
existing object rather than a new one. The following is an example:

int main() {
Example e1(2, -1.3);
Example e2(3, 4.1);
e2 = e1;

}

An assignment expression consists of a left-hand-side object, the = operator, and a right-hand-side object or value.
The expression evaluates the right-hand side, copies it into the left-hand-side object, and then evaluates back to the
left-hand-side object. We can then use the result in a larger expression:

cout << (e2 = e1).get_x() << endl; // prints 2

Like most operators, the assignment operator can be overloaded; the overload must be a member function of the type
of the left-hand side.

class Example {
public:
Example & operator=(const Example &rhs);
...

};

The function takes in an Example by reference to const, corresponding to the right-hand operand of the assignment.1
The return value will be the left-hand-side object itself, and it needs to be returned by reference rather than by value
(the latter would make a copy rather than returning the object itself). Thus, the return type is Example &.

The following is a definition of the overloaded assignment operator that just does a member-by-member copy:
1 In C++, a reference to const can bind to a temporary, allowing the right-hand operand of the assignment to be a value rather than an object.

26.2. Assignment Operator 170



Programming and Data Structures, Release 0.3

Example & Example::operator=(const Example &rhs) {
x = rhs.x;
y = rhs.y;
return *this;

}

The two members are individually copied from the right-hand side. The left-hand-side object must be returned; we
need to dereference the this pointer to get to the object to which it is pointing.

Like the copy constructor, the compiler provides an implicit definition of the assignment operator if a user-defined one
is not present. Like the implicitly defined copy constructor, the implicit assignment operator performs a member-by-
member copy.

26.3 Shallow and Deep Copies

For most class types, a member-by-member copy is sufficient, and there is no need to write a custom copy constructor
or assignment operator. However, for a type that manages a dynamic resource, a member-by-member copy generally
results in incorrect sharing of a resource. For example, consider the following code that copies an UnsortedSet:

int main() {
UnsortedSet<int> s1;
for (int i = 0; i < 5; ++i) {
s1.insert(i);

}

UnsortedSet<int> s2 = s1;
cout << s1 << endl; // prints { 0, 1, 2, 3, 4 }
cout << s2 << endl; // prints { 0, 1, 2, 3, 4 }

s2.insert(5); // causes a grow

cout << s2 << endl; // prints { 0, 1, 2, 3, 4, 5 }
cout << s1 << endl; // UNDEFINED BEHAVIOR

}

The initialization of s2 calls the implicit copy constructor, which does a member-by-member copy, as if it were written
as follows:

template <typename T>
UnsortedSet<T>::UnsortedSet(const UnsortedSet &other)
: elements(other.elements), capacity(other.capacity),
num_elements(other.num_elements) {}

The result is that s1.elements and s2.elements point to the same array, as depicted by Figure 26.2.

Inserting 5 into s2 causes a grow operation, which creates a new array and deletes the old one. The result is shown in
Figure 26.3.

Then printing out s1 accesses the old, deleted array, resulting in undefined behavior.

The fundamental problem is that the implicitly defined member-by-member copy is a shallow copy: it copies the pointer
to the array of elements, rather than following it and copying the array as a whole. This violates the representation
invariant that each set has its own array. Instead, we need a deep copy, where we make a copy of the underlying

26.3. Shallow and Deep Copies 171



Programming and Data Structures, Release 0.3

Stack

0x101c 5 num_elements

0x1018 5 capacity

main

s2

Heap

0x1010 elements

0 1 2 3 4
0 1 2 3 4

0x100c 5 num_elements

0x1008 5 capacity
s1

0x1000 elements

UnsortedSet<int>

UnsortedSet<int>

Figure 26.2: The implicit copy constructor copies each member one by one, resulting in a shallow copy.

0x101c 5 num_elements

0x1018 5 capacity

main

s2
0x1010 elements

0x100c 5 num_elements

0x1008 5 capacity
s1

0x1000 elements

UnsortedSet<int>

UnsortedSet<int>

Stack Heap

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9

10

6

Figure 26.3: A subsequent grow() results in one of the sets using a dead array.

26.3. Shallow and Deep Copies 172



Programming and Data Structures, Release 0.3

resource rather than having the two sets share the same resource. To obtain a deep copy, we need to provide a custom
implementation of the copy constructor:

template <typename T>
class UnsortedSet {
public:

UnsortedSet(const UnsortedSet &other);
...

};

template <typename T>
UnsortedSet<T>::UnsortedSet(const UnsortedSet &other)
: elements(new T[other.capacity]), // create new array
capacity(other.capacity), // shallow copy non-resources
num_elements(other.num_elements) {

for (int i = 0; i < num_elements; ++i) { // copy over the elements
elements[i] = other.elements[i];

}
}

Rather than copying the elements pointer, we initialize the new set’s member to point to the start of a dynamic array
of the same capacity as other‘s. The members that don’t represent resources are just copied directly (capacity and
num_elements). The body of the constructor copies each element from the old set to the new one. The result is that
each set has its own, independent copy of the elements, as shown in Figure 26.4.

Stack Heap

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 40x101c 5 num_elements

0x1018 5 capacity

main

s2
0x1010 elements

0x100c 5 num_elements

0x1008 5 capacity
s1

0x1000 elements

UnsortedSet<int>

UnsortedSet<int>

Figure 26.4: The custom copy constructor for UnorderedSet performs a deep copy, providing the new set with its
own array.

The custom copy constructor provides a deep copy in the case of initializing a new set as a copy. We need a deep copy
in assignment as well:

s2 = s1;

Thus, we need a custom assignment operator in addition to a custom copy constructor. The following is a first attempt
at defining one:

26.3. Shallow and Deep Copies 173



Programming and Data Structures, Release 0.3

template <typename T>
class UnsortedSet {
public:

UnsortedSet & operator=(const UnsortedSet &rhs);
...

};

template <typename T>
UnsortedSet<T> & UnsortedSet<T>::operator=(const UnsortedSet &rhs) {
delete[] elements; // delete old array

elements = new T[rhs.capacity]; // make new array of the required size
capacity = rhs.capacity; // shallow copy non-resources
num_elements = rhs.num_elements;

for (int i = 0; i < num_elements; ++i) { // copy over the elements
elements[i] = rhs.elements[i];

}

return *this; // return LHS object
}

The function first deletes the old array before creating a new one. It may be the case that the size of the rhs set is
larger than the capacity of the set receiving the copy, in which case creating a new array is necessary. The function
then makes a shallow copy of the non-resources, followed by copying over each of the elements. Finally, it returns the
left-hand-side object.

While this assignment operator works in most cases, it fails in the case of self assignment. An expression such as s2 =
s2 will delete s2.elements before proceeding to access the elements in the subsequent loop. Instead, the assignment
should have no effect when both operands are the same object, so we need to check for this case before doing any work.
We do so as follows:

template <typename T>
UnsortedSet<T> & UnsortedSet<T>::operator=(const UnsortedSet &rhs) {
if (this == &rhs) { // self-assignment check
return *this;

}

delete[] elements; // delete old array

elements = new T[rhs.capacity]; // make new array of the required size
capacity = rhs.capacity; // shallow copy non-resources
num_elements = rhs.num_elements;

for (int i = 0; i < num_elements; ++i) { // copy over the elements
elements[i] = rhs.elements[i];

}

return *this; // return LHS object
}

The this pointer points to the left-hand-side operand, while the parameter rhs is an alias for the right-hand-side
operand. We need to obtain the address of rhs to compare to the address stored in the this pointer. If the two
addresses are the same, then the two operands are the same object, so we immediately return the left-hand-side object.

26.3. Shallow and Deep Copies 174



Programming and Data Structures, Release 0.3

(We cannot return rhs because it is declared as a reference to const, while the return type is not.)

26.4 The Law of the Big Three

We have seen that the implicitly defined copy constructor and assignment operator both do a shallow copy, and that
this behavior is incorrect for classes that manage a dynamic resource. Instead, we need a deep copy, which requires us
to write our own custom versions of the two functions.

We also saw last time that resource management requires us to write our own custom destructor as well. It is not a
coincidence that we needed to write custom versions of all three of the destructor, copy constructor, and assignment
operator. The Law of the Big Three (also know as the Rule of Three) is a rule of thumb in C++ that if a custom version of
any of the destructor, copy constructor, or assignment operator is required, almost certainly all three need to be custom.
We refer to these three members as the big three.

By default, C++ provides implicit definitions of each of the big three:

• The implicitly defined destructor does no special cleanup; it is equivalent to a destructor with an empty body.
Like other destructors, it does implicitly destroy the members as well as the base class, if there is one.

• The implicitly defined copy constructor does a member-by-member shallow copy.

• The implicitly defined assignment operator does a member-by-member shallow copy.

When a class manages a resource, however, the programmer must provide custom versions of the big three:

• The destructor should free the resources.

• The copy constructor should make a deep copy of the resources and shallow copy the non-resources.

• The assignment operator should:

– Do a self-assignment check.

– Free the old resources.

– Make a deep copy of the right-hand-side object’s resources.

– Shallow copy the non-resources from the right-hand-side object.

– Return the left-hand-side object with *this.

26.5 Example: Calls to the Big Three

To better understand when the big three are invoked, we instrument the big three for the following class to print a
message:

class Foo {
public:

Foo(const string &str_in) : str(str_in) {
cout << "Foo ctor " << str << endl;

}

Foo(const Foo &other) : str(other.str) {
cout << "Foo copy ctor " << str << endl;

}

Foo & operator=(const Foo &rhs) {
(continues on next page)

26.4. The Law of the Big Three 175



Programming and Data Structures, Release 0.3

(continued from previous page)

cout << "Foo assign " << rhs.str << " to " << str << endl;
str = rhs.str;
return *this;

}

~Foo() {
cout << "Foo dtor " << str << endl;

}

private:
string str;

};

The Foo class has a str member variable that we will use to distinguish between different Foo objects. The construc-
tors, assignment operator, and destructor all print the value of str.

Let us take a look at a small program that uses Foo:

void func(const Foo &x, Foo y) {
Foo z = x;

}

int main() {
Foo a("apple");
Foo b("banana");
Foo c("craisin");

func(a, b);

Foo c2 = c;
c2 = c;

}

This prints the following when run:

Foo ctor apple
Foo ctor banana
Foo ctor craisin
Foo copy ctor banana
Foo copy ctor apple
Foo dtor apple
Foo dtor banana
Foo copy ctor craisin
Foo assign craisin to be craisin
Foo dtor craisin
Foo dtor craisin
Foo dtor banana
Foo dtor apple

In main(), the variables a, b, and c are constructed in order, resulting in the Foo ctor outputs. Then func() is
called. The first parameter is passed by reference, so no copy is made. The second parameter is passed by value, so the
parameter object is initialized as a copy of the argument. This invokes the copy constructor, which prints Foo copy
ctor banana. Within the body of func(), z is initialized as a copy of x, resulting in Foo copy ctor apple. When
func() returns, the local objects are destructed in reverse order of construction: z is destructed first, producing Foo

26.5. Example: Calls to the Big Three 176



Programming and Data Structures, Release 0.3

dtor apple, then y is destructed, printing Foo dtor banana.

Continuing in main(), c2 is initialized as a copy of c, invoking the copy constructor and printing Foo copy ctor
craisin. In the next line, c2 already exists, so the expression is an assignment and calls the assignment operator,
which prints Foo assign craisin to craisin. At the end of main(), the local objects are destructed in reverse
order: c2, then c, then b, and then a. The last four lines of output are the result.

26.6 Destructors and Polymorphism

We saw previously that applying the delete operator to a pointer follows the pointer and kills the object at the given
address. If the object is of class type, its destructor is run. However, a subtle issue arises when the static and dynamic
type of the object do not match: does the destructor use static or dynamic binding? Consider the following example:

class Base {
public:
virtual void add(int x) = 0;

~Base() {
cout << "Base dtor" << endl;

}
};

class Derived : public Base {
public:
void add(int x) override {
items.push_back(x);

}

~Derived() {
cout << "Derived dtor" << endl;

}

private:
vector<int> items;

};

int main() {
Base *bptr = new Derived;
bptr->add(3);
delete bptr;

}

Running this code results in:

$ ./a.out
Base dtor

The destructor is statically bound, so ~Base() is invoked rather than ~Derived(). This is problematic: even though
Derived itself is not managing dynamic memory, its member variable items is. Since the destructor for Derived was
not called, the members introduced by Derived were also not destructed. Running Valgrind on the program illustrates
the issue:

26.6. Destructors and Polymorphism 177

http://valgrind.org/


Programming and Data Structures, Release 0.3

$ valgrind --leak-check=full ./a.out
==13359== Memcheck, a memory error detector
==13359== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==13359== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==13359== Command: ./a.out
==13359==
Base dtor
==13359==
==13359== HEAP SUMMARY:
==13359== in use at exit: 4 bytes in 1 blocks
==13359== total heap usage: 4 allocs, 3 frees, 73,764 bytes allocated
==13359==
==13359== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==13359== at 0x4C3017F: operator new(unsigned long) (in /usr/lib/valgrind/vgpreload_
→˓memcheck-amd64-linux.so)
==13359== by 0x1098CD: __gnu_cxx::new_allocator<int>::allocate(unsigned long, void␣
→˓const*) (in /home/akamil/tmp/a.out)
==13359== by 0x109782: std::allocator_traits<std::allocator<int> >
→˓::allocate(std::allocator<int>&, unsigned long) (in /home/akamil/tmp/a.out)
==13359== by 0x1095BB: std::_Vector_base<int, std::allocator<int> >::_M_
→˓allocate(unsigned long) (in /home/akamil/tmp/a.out)
==13359== by 0x109163: void std::vector<int, std::allocator<int> >::_M_realloc_insert
→˓<int const&>(__gnu_cxx::__normal_iterator<int*, std::vector<int, std::allocator<int> >␣
→˓>, int const&) (in /home/akamil/tmp/a.out)
==13359== by 0x109035: std::vector<int, std::allocator<int> >::push_back(int const&)␣
→˓(in /home/akamil/tmp/a.out)
==13359== by 0x108F65: Derived::add(int) (in /home/akamil/tmp/a.out)
==13359== by 0x108E63: main (in /home/akamil/tmp/a.out)
==13359==
==13359== LEAK SUMMARY:
==13359== definitely lost: 4 bytes in 1 blocks
==13359== indirectly lost: 0 bytes in 0 blocks
==13359== possibly lost: 0 bytes in 0 blocks
==13359== still reachable: 0 bytes in 0 blocks
==13359== suppressed: 0 bytes in 0 blocks
==13359==
==13359== For counts of detected and suppressed errors, rerun with: -v
==13359== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

The error message indicates that the memory allocated by the items vector is never freed.

The solution is to use dynamic binding for the destructor instead by declaring it as virtual:

class Base {
public:
virtual void add(int x) = 0;

virtual ~Base() {
cout << "Base dtor" << endl;

}
};

class Derived : public Base {
(continues on next page)

26.6. Destructors and Polymorphism 178



Programming and Data Structures, Release 0.3

(continued from previous page)

public:
void add(int x) override {
items.push_back(x);

}

~Derived() { // virtual implicitly inherited
cout << "Derived dtor" << endl;

}
private:
vector<int> items;

};

int main() {
Base *bptr = new Derived;
bptr->add(3);
delete bptr;

}

Now the following is printed when the code is run:

$ ./a.out
Derived dtor
Base dtor

Valgrind also no longer reports an error.

In general, a base class should always declare the destructor to be virtual if the class will be used polymorphically
(meaning that a base-class pointer or reference may be bound to a derived-class object). If the base class destructor has
no work to do, it may be defaulted. The derived class destructor need not be explicitly defined, since “virtualness” is
inherited even if the destructor is implicitly defined by the compiler.

class Base {
public:
virtual void add(int x) = 0;

virtual ~Base() = default; // use implicitly defined dtor, but make it virtual
};

class Derived : public Base {
public:
void add(int x) override {
items.push_back(x);

}
// implicitly defined dtor inherits virtual

private:
vector<int> items;

};

int main() {
Base *bptr = new Derived;
bptr->add(3);
delete bptr;

}

26.6. Destructors and Polymorphism 179



Programming and Data Structures, Release 0.3

Valgrind does not show a memory leak:

$ valgrind --leak-check=full ./a.out
==13479== Memcheck, a memory error detector
==13479== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==13479== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==13479== Command: ./a.out
==13479==
==13479==
==13479== HEAP SUMMARY:
==13479== in use at exit: 0 bytes in 0 blocks
==13479== total heap usage: 3 allocs, 3 frees, 72,740 bytes allocated
==13479==
==13479== All heap blocks were freed -- no leaks are possible
==13479==
==13479== For counts of detected and suppressed errors, rerun with: -v
==13479== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

26.6. Destructors and Polymorphism 180



CHAPTER

TWENTYSEVEN

LINKED LISTS

A sequential container is a container that holds elements and allows them to be accessed in sequential order. The
simplest sequential container is a built-in array, which stores its elements contiguously in memory:

const int SIZE = 5;
int array[SIZE] = { 1, 2, 3, 4, 5 };
// iterate over elements in order with traversal by pointer
for (int *ptr = array; ptr != array + SIZE; ++ptr) {
cout << *ptr << endl;

}

We can also traverse over arrays by index, using random access to get to an element:

const int SIZE = 5;
int array[SIZE] = { 1, 2, 3, 4, 5 };
// iterate over elements in order with traversal by index
for (int i = 0; i < SIZE; ++i) {
cout << array[i] << endl;

}

The fact that the elements are stored contiguously makes random access efficient: it translates directly to pointer arith-
metic, so that it takes the same amount of time to access an element in the middle of the array as one at the beginning.

cout << *(array + i) << endl;

However, arrays have significant limitations: their size is fixed upon creation, and for non-dynamic arrays, the size must
be known at compile time.

A vector is a class template that provides an abstraction over a dynamically allocated array. Like UnsortedSet, it
grows as needed by swapping out an old array for a new one. A vector also provides an interface for iterating over the
elements in order:

vector<int> data;
// add elements to the vector
for (int i = 1; i <= 5; ++i) {
data.push_back(i);

}
// iterate over elements in order with traversal by iterator
for (vector<int>::iterator it = data.begin(); it != vec.end(); ++it) {
cout << *it << endl;

}

We will cover iterators and traversal by iterator next time.

181



Programming and Data Structures, Release 0.3

Sequence abstractions based on contiguous memory have the drawback of inefficient insertion at the beginning or
middle of the sequence. For instance, to insert an item at a particular position, we need to first move the elements at
that position and later out of the way, as shown in Figure 27.1.

1 3 4
0 1 2 3

1 3 4
0 1 2 3

2 3 4

Figure 27.1: Inserting in the middle of a contiguous data structure requires elements to be shifted out of the way.

Thus, insertion at the beginning or middle is a linear-time operation.

On the other hand, if we give up the abstraction of contiguous memory, we can place a new item anywhere in memory.
Since the elements are no longer stored contiguously, we cannot move to the next element by just incrementing an
address. Instead, we have to explicitly keep track of where the next element is through a pointer.

0x9000 1   0x9030

0x9010 42

0x9020 4      0x0

0x9030 3   0x9020

0x9040 31415

0x9050 280

0x9060 2   0x9030

0x9060
0x9000 1   0x9030

0x9010 42

0x9020 4      0x0

0x9030 3   0x9020

0x9040 31415

0x9050 280

0x9060

Figure 27.2: A noncontiguous data structure can use pointers to keep track of each element’s location. Inserting in the
middle can be done by just modifying a pointer.

As illustrated in Figure 27.2, inserting in the middle now just involves changing the value of a pointer.

For each element in our sequence, we need to keep track of both the datum itself as well as a pointer to the next piece
of the sequence. This is heterogeneous data, so we use a node class-type object to keep track of the two values:

struct Node {
int datum;
Node *next;

};

We define the Node type as plain-old data, using the struct keyword and accessing the members directly. For now,
we will stick to int as the element type; later, we will convert our abstraction into a template. The remaining Node
member is a pointer to the next Node in our sequence.

The sequence of Node objects in Figure 27.3 represents the elements ( 1 2 3 4 ).

We use a null pointer as a sentinel denoting the end of the sequence, storing that in the next pointer of the last node.
We refer to the sequence of nodes as a linked list, as it consists of a list of items linked together by pointers.

Rather than exposing the nodes directly as part of an abstract data type, we define an IntList ADT that internally
maintains a sequence of nodes. It need only keep track of the location of the first Node, since we can get to the others
by following next pointers:

182



Programming and Data Structures, Release 0.3

Node

1 datum

next

Node

2 datum

next

Node

4 datum

0x0 next

Node

3 datum

next

Figure 27.3: Nodes representing a sequence of four elements. A null pointer represents the end of the sequence.

class IntList {
...

private:
Node *first;

}

IntList

first
Node

1 datum

next

Node

2 datum

next

Node

4 datum

0x0 next

Node

3 datum

next

Figure 27.4: An IntList object and its nodes.

Since the Node objects are stored indirectly from the IntList object, they must be in dynamic memory, and IntList
must ensure that their memory is properly managed.

Before we consider the representation of IntList further, we first write some code that uses IntList in order to work
out its interface:

int main() {
IntList list; // ( )
list.push_front(1); // ( 1 )
list.push_front(2); // ( 2 1 )
list.push_front(3); // ( 3 2 1 )

cout << list.front(); // 3
(continues on next page)

183



Programming and Data Structures, Release 0.3

(continued from previous page)

list.front() = 4; // ( 4 2 1 )

list.print(cout); // 4 2 1

list.pop_front(); // ( 2 1 )
list.pop_front(); // ( 1 )
list.pop_front(); // ( )

cout << list.empty(); // true (or 1)
}

The class should have a default constructor that makes the list empty. It should also have a push_front() member
function to insert an item at the beginning, as well as front() to retrieve the first item. The latter must support both
reading and writing the first element. The remaining member functions are print(), pop_front() to remove the first
item, and empty(). The following is the resulting interface:

class IntList {
public:
// EFFECTS: Constructs an empty list.
IntList();

// EFFECTS: Returns true if the list is empty.
bool empty() const;

// REQUIRES: the list is not empty
// EFFECTS: Returns (by reference) the first element.
int & front();

// EFFECTS: Inserts datum at the front of the list.
void push_front(int datum);

// REQUIRES: the list is not empty
// EFFECTS: Removes the first element.
void pop_front();

// MODIFIES: os
// EFFECTS: Prints the items in the list, each followed by a space.
void print(std::ostream &os) const;

...
};

Notice that Node appears nowhere in the interface. It is an implementation detail, so it should be defined as a private
member of IntList. This makes it a nested class, which is a class (or struct) defined as a member of another class.

class IntList {
...

private:
struct Node {
int datum;
Node *next;

(continues on next page)

184



Programming and Data Structures, Release 0.3

(continued from previous page)

};

Node *first;
};

Now that we have a representation, the next step is to determine the representation invariants. We have already decided
to use a null pointer to denote the end of the sequence of nodes. Similarly, we can store a null pointer in first to
represent an empty list. Thus, the invariants are as follows:1

• first is either null or a pointer to a valid Node

• the next member of all but the last node points to another valid Node

• the next member of the last node is null

We can now proceed to implement the constructor and the remaining member functions.

The constructor must ensure that the list is initialized to satisfy the representation invariants. Since the default con-
structor makes the list empty, it must initialize first to be null:

IntList::IntList() : first(nullptr) {}

The empty() function just needs to check whether first is null:

bool IntList::empty() const {
return first == nullptr; // or just return !first;

}

For front(), we will first assert the REQUIRES clause that the list not be empty. If that is satisfied, the representation
invariants tell us that first is pointing to a valid node. Its datum member holds the first element.

int & IntList::front() {
assert(!empty());
return first->datum;

}

The return by reference is necessary to allow code such as:

list.front() = 4;

The left-hand side of an assignment must be an object, not a temporary value, so front() must return an object by
reference.

For push_front(), we need to consider two cases:

• The list is empty, in which case first is null.

• The list is not empty, in which case first points to a valid node.

In both cases, we construct a new Node in dynamic memory, set its datum to be the value that is being inserted, set its
next to be the existing value of first, and set first to point to the new Node.

void IntList::push_front(int datum) {
Node *p = new Node;
p->datum = datum;

(continues on next page)

1 There are two further invariants: a node is associated with exactly one list, and there are no cycles among the next pointers of the nodes. The
latter makes it invalid, for instance, to have one node’s next point to a second node and have the second’s next point back to the first node.

185



Programming and Data Structures, Release 0.3

IntList

0x0 first
Node

-5 datum

0x0 next

IntList

first
Node

-5 datum

0x0 nextNode

3 datum

next

Figure 27.5: Inserting an element to the front of an empty and non-empty list.

(continued from previous page)

p->next = first;
first = p;

}

A more succinct way to accomplish this is with an initializer list that directly initializes each member of the new Node;
this is permitted since Node is a C-style ADT.

void IntList::push_front(int datum) {
first = new Node{ datum, first };

}

In pop_front(), we again assert the REQUIRES clause. We should then consider two possible cases:

• The list has one item, in which case it will end up as empty.

• The list has more than one item, and it will not end up empty.

In the former case, the sole node is the last one, and the representation invariants tell us that its next is null. Thus,
setting first to the node’s next suitably makes the list empty. In the second case, the first node’s next is pointing to
the second node in the list, so first should end up pointing at that node when the first one is removed. Thus, in both
cases, we need to assign the value of first->next to first.

We also need to properly manage dynamic memory; in particular, we must delete the node that is being removed, as it
is memory that no longer will be used.

Consider the following implementation of pop_front():

void IntList::pop_front() {
assert(!empty());
delete first;
first = first->next;

}

This code dereferences first through the arrow operator after the underlying object has been deleted, resulting in
undefined behavior. Let’s try to fix this by reordering the statements:

void IntList::pop_front() {
assert(!empty());
first = first->next;

(continues on next page)

186



Programming and Data Structures, Release 0.3

(continued from previous page)

delete first;
}

Now, the assignment to first orphans what previously was the first node; we no longer have a means to get to that
object, resulting in a memory leak. The code then proceeds to delete what used to be the second node.

Neither ordering works correctly on its own. What we need is a temporary to keep track of the first node, so that we
can change the value of first but still be able to delete the node that is being removed. The following are two correct
implementations:

void IntList::pop_front() {
assert(!empty());
Node *victim = first; // temporary keeps track of old first
first = first->next;
delete victim;

}

void IntList::pop_front() {
assert(!empty());
Node *new_first = first->next; // temporary keeps track of new first
delete first;
first = new_first;

}

Figure 27.6 illustrates the first implementation of pop_front().

IntList

first
Node

-5 datum

0x0 nextNode

3 datum

next

IntList::pop_front

this

Stack

victim

Figure 27.6: Removing an element from the front of a list.

187



Programming and Data Structures, Release 0.3

27.1 Traversing a Linked List

Iterating over a linked list’s elements from outside the class requires an iterator abstraction that we will see next time:
the Node struct is private, so external code cannot use Nodes to iterate through the list. Code within IntList, on the
other hand, does have access to Node, so it can traverse the list by starting at the first member and following each
node’s next pointer until reaching the null sentinel. The following print() member function uses this strategy:

void IntList::print(std::ostream &os) const {
for (Node *node_ptr = first; node_ptr; node_ptr = node_ptr->next) {
os << node_ptr->datum << " ";

}
}

The loop initializes node_ptr as a copy of first. If the list is empty, first is null, so node_ptr will be initialized
to null as well. The truth value of a null pointer is false, so the condition of the loop will evaluate to false and the loop
will exit. (Alternatively, node_ptr can be compared to nullptr instead: node_ptr != nullptr.)

If the list is not empty, node_ptr will not be initially null, and its truth value will be true. The body then executes, and
it uses the -> operator to access the datum member of the node that node_ptr points to. The loop update then copies
the node’s next pointer into node_ptr, moving node_ptr to point to the next node. When the iteration reaches the
last node in the list, its next is null, so the update sets node_ptr to be null. This results in the loop condition being
false, so the loop exits.

IntList

first
Node

-5 datum

0x0 nextNode

3 datum

next

IntList::print

this

Stack

node_ptr

1

2

3 0x0

Figure 27.7: Traversal of the nodes in a list, starting at first, following next pointers, and ending at the null sentinel.

27.2 Linked List Big Three

Inserting an element into a list allocates a Node in dynamic memory, so the list must properly manage the node objects
to avoid a memory leak. The compiler-generated destructor does not free the nodes’ memory, so we need to write a
custom destructor instead. The law of the big three then tells us that we need to write a custom copy constructor and
assignment operator as well.

Both the destructor and the assignment operator must free the list’s resources, and both the copy constructor and
assignment operator perform a deep copy of another list’s resources. To avoid code duplication, we write a pop_all()
member function to free all the elements and their nodes, and a push_all() function to copy all the elements from
another list. These functions are not part of the interface, so we write them as private members:

27.1. Traversing a Linked List 188



Programming and Data Structures, Release 0.3

class IntList {
...

private:
// EFFECTS: Removes all the elements from this list.
void pop_all();

// EFFECTS: Adds all elements from other into this list.
void push_all(const IntList &other);

};

With these two functions, we can write the big three as follows:

IntList::IntList(const IntList &other) : IntList() {
push_all(other);

}

IntList & IntList::operator=(const IntList &rhs) {
if (this != &rhs) {
pop_all();
push_all(rhs);

}
return *this;

}

IntList::~IntList() {
pop_all();

}

The copy constructor delegates to the default constructor to make the list empty, then calls push_all() to copy all
the elements from the other list. The assignment operator does a self-assignment check, calls pop_all() to remove
all the existing elements, and invokes push_all() to copy the elements from the other list. The destructor just calls
pop_all() to remove all the elements and free their associated nodes.

The implementation of pop_all() is straightforward: we already have a pop_front() function that removes a single
item, so we just need to repeatedly call it until the list is empty:

void IntList::pop_all() {
while (!empty()) {

pop_front();
}

}

The push_all() function needs to iterate over each of the elements in the other list, adding them one by one to the
current list. We can follow the same iteration pattern we used in print(), and we have a push_front() function that
adds a single element:

void IntList::push_all(const IntList &other) {
for (Node *node_ptr = other.first; node_ptr; node_ptr = node_ptr->next) {
push_front(node_ptr->datum);

}
}

However, this implementation ends up inserting the elements in reverse order: if other contains the elements ( 1 2
3 ), the code would insert 1, then 2 before that, then 3 before that, resulting in ( 3 2 1 ).

27.2. Linked List Big Three 189



Programming and Data Structures, Release 0.3

Rather than inserting each element at the beginning of the list, we need to insert at the end with a push_back()
function.

void IntList::push_all(const IntList &other) {
for (Node *node_ptr = other.first; node_ptr; node_ptr = node_ptr->next) {
push_back(node_ptr->datum);

}
}

27.3 Insertion and Removal at the End

With our current list representation, push_back() must traverse the entire list to insert the new element:

void IntList::push_back(int datum) {
Node *new_node = new Node{ datum, nullptr };
if (empty()) {
first = new_node;

} else {
Node *node_ptr = first;
for (; node_ptr->next; node_ptr = node_ptr->next); // find last node
node_ptr->next = new_node; // set last node's next to new_node

}
}

This is a very inefficient algorithm; the core problem is our list implementation only keeps track of the first node, but we
need to insert after the last node. We can make push_back() much more efficient by changing our list representation
to keep track of the last node as well:

class IntList {
...

private:
Node *first;
Node *last;

};

IntList

first
Node

1 datum

next

Node

2 datum

next

Node

4 datum

0x0 next

Node

3 datum

next

last

Figure 27.8: Double-ended list representation with first and last pointers.

27.3. Insertion and Removal at the End 190



Programming and Data Structures, Release 0.3

We update our representation invariants so that an empty list is represented by both last and first being null, and
that last points to the last node in the sequence for a non-empty list.

We can then write push_back() as follows:

void IntList::push_back(int datum) {
Node *new_node = new Node{ datum, nullptr };
if (empty()) {
first = last = new_node;

} else {
last = last->next = new_node;

}
}

In the case of inserting into an empty list, we need to set both first and last pointing at the new node. (We would
need to modify pop_front() to do this as well.) When inserting at the end of a non-empty list, we have to set the
next pointer of what used to be the last node to point to the new node, and we must also update the last member of
the IntList so that it points to the new node.

Now that we have push_back(), the logical next step is to provide pop_back() as well. Unfortunately, pop_back()
requires setting the last pointer to point to what used to be the second-to-last node, and we can only get to that node
by traversing the entire list from the beginning. Here, the problem is that our nodes only have a next pointer, so they
allow us to traverse in the forward direction but not in reverse. We can modify our representation once more to enable
backwards traversal by adding a prev pointer to each node:

class IntList {
...

private:
struct Node {
int datum;
Node *prev;
Node *next;

};

Node *first;
Node *last;

};

This is now a doubly linked list, since each node has two links, one to the previous node and one to the next node. Our
original list is a singly linked list.

The standard library provides both implementations: std::forward_list is a singly linked list, while std::list
is a doubly linked list. The former uses less space than the latter, since the nodes don’t have a pointer to the previous
node, but it does not provide the ability to iterate backwards over the list.

27.4 List Template

We can generalize the IntList class to hold objects of other types by making it a template. Each instantiation is still
homogeneous: List<int> only holds ints, List<string> only holds strings, and so on.

template <typename T>
class List {
public:

List();
(continues on next page)

27.4. List Template 191



Programming and Data Structures, Release 0.3

IntList

first
Node

1 datum

0x0 prev

last

next

Node

2 datum

prev

next

Node

3 datum

prev

next

Node

4 datum

prev

0x0 next

Figure 27.9: Doubly linked list with next and prev pointers in each node.

(continued from previous page)

void empty() const;

T & front();

void push_front(const T &datum);

void pop_front();

void push_back(const T &datum);

void pop_back();

...

private:
struct Node {
T datum;
Node *prev;
Node *next;

};

Node *first;
Node *last;

};

By placing the Node struct inside the List template, each instantiation of List will have its own Node type;
List<int>::Node, List<string>::Node, and List<Duck>::Node are all distinct types.

Now that our container is a template, we pass elements by reference. For List<int>, the elements are small enough
to copy, but for class-type elements such as in List<string> or List<Duck>, we want to avoid making unnecessary
copies. A good rule of thumb is to pass a function parameter by reference if the function parameter’s type is a template
parameter, since the latter may be instantiated with a large class type.

27.4. List Template 192



CHAPTER

TWENTYEIGHT

IMPLEMENTING ITERATORS

Last time, we saw how to iterate over the elements of a linked list from within the list class itself:

template <typename T>
void List<T>::print(std::ostream &os) const {
for (Node *node_ptr = first; node_ptr != nullptr;

node_ptr = node_ptr->next) {
os << node_ptr->datum << " ";

}
}

The strategy is to start with the first node in the list, then follow the nodes’ next pointers until reaching the null sentinel.
We can try to follow the same strategy from outside the class:

List<int> list;
...
for (Node *node_ptr = list.first; node_ptr != nullptr;

node_ptr = node_ptr->next) {
cout << node_ptr->datum << endl;

}

However, this strategy doesn’t work from outside the list because the nested Node class is private – it is an implemen-
tation detail, so outside code should not depend on it anyway. The first member is also private, so the initialization
of node_ptr is invalid. Instead, we need to provide a different interface for iterating over a list.

We have seen two patterns for iterating over a sequential container, traversal by index and traversal by pointer. In
traversal by index, we use a loop variable of integral type, increment it in each iteration, and access an element by using
the index as an offset into the container:

const int SIZE = 5;
int array[SIZE] = { 1, 2, 3, 4, 5 };
// iterate over elements in order with traversal by index
for (int i = 0; i < SIZE; ++i) {
cout << array[i] << endl;

}

To use this pattern with a container, it must support random access, the ability to directly access an element through
an index. Array-based sequential containers generally support random access. For built-in arrays, it translates directly
to pointer arithmetic. Array-based class types such as std::array and std::vector overload the subscript operator
to index into the underlying array, which then turns into pointer arithmetic.

Linked lists do not provide random access; since they are not array-based, accessing an element in the middle of the
list cannot be done with pointer arithmetic, but must traverse from the start of the list as in print(). Thus, traversal
by index is not an appropriate pattern for a linked list.

193



Programming and Data Structures, Release 0.3

Traversal by pointer, on the other hand, starts with a pointer to the beginning of a sequence and iterates by moving that
pointer forward to each subsequent element, until that pointer reaches past the end of the sequence:

const int SIZE = 5;
int array[SIZE] = { 1, 2, 3, 4, 5 };
// iterate over elements in order with traversal by pointer
for (int *ptr = array; ptr != array + SIZE; ++ptr) {
cout << *ptr << endl;

}

A similar pattern would work for a linked list: start off with something like a pointer that “points” to the beginning of
the list, move it forward one element at a time, and stop when we get past the end of the list:

List<int> list;
...
for (Iterator it = list.begin(); it != list.end(); ++it) {
cout << *it << endl;

}

We use an object called an iterator to iterate over the elements. The pattern above is called traversal by iterator, and it
is a generalization of traversal by pointer.

To traverse with an iterator, it must provide the following operations:1

• dereference (prefix *)

• increment (prefix ++)

• equality checks (== and !=)

In addition, the container itself must provide two member functions:

• begin() returns an iterator to the start of the sequence

• end() returns a “past-the-end” iterator that represents a position that is past the last element of the sequence

An iterator is a class-type object that has the same interface as a pointer. We provide the same interface by overloading
the required operators:

template <typename T>
class Iterator {
public:
T & operator*() const;

Iterator &operator++();

bool operator==(Iterator rhs) const;

bool operator!=(Iterator rhs) const;
};

The unary * operator is overloaded to return the element the iterator is pointing to by reference. The prefix ++ operator
moves the iterator to point to the next element in the sequence, and it returns the iterator itself by reference. This allows
the operator to be chained:

++++it;

1 There are many kinds of iterators in C++. We will only implement a subset of the operations required for an input iterator.

194

https://en.cppreference.com/w/cpp/iterator


Programming and Data Structures, Release 0.3

The equality operators determine if the receiver points to the same element as the rhs iterator. Unlike most class types,
we pass iterators by value – they are generally small, and it is standard practice in C++ to make copies of them when
we pass them to a function, just like we would for pointers.

Before we proceed to implement the operators, we need a data representation. The representation of an iterator is
specific to a particular kind of container. For a linked list, traversal by iterator is just an abstraction over the traversal
in print():

• A list iterator is an abstraction over a pointer to a node.

• The call list.begin() returns an iterator constructed from first.

• The past-the-end iterator returned by list.end() is represented by a null pointer.

• Comparing two iterators compares their underlying node pointers.

• Incrementing an iterator moves its node pointer to the next node using the original node’s next member.

• Derferencing the iterator obtains the datum member of the underlying node.

Thus, we represent an iterator with just a pointer to a node.

template <typename T>
class Iterator {
...

private:
Node *node_ptr;

};

List<int>

first
List<int>::Node

3 datum

next

List<int>::Node

-5 datum

next

List<int>::Node

4 datum

0x0 next

List<int>::Node

2 datum

next

last

Iterator

node_ptr

Figure 28.1: A list iterator is an abstraction of a pointer to a node.

As mentioned above, we use a null pointer for an iterator that is past the end of a list. The end condition for the traversal
in print() is when the node pointer is null – after the traversal reaches the last node, it sets the pointer to the value of
the last node’s next member, which is null according to the list’s representation invariant. Thus, it makes sense to use
a null pointer to represent a past-the-end iterator.

Now that we have a representation, we should consider representation invariants. It is the case that node_ptr will
either be null or point to a valid list node when the iterator is created. However, we will see that an iterator may be

195



Programming and Data Structures, Release 0.3

List<int>

first
List<int>::Node

3 datum

next

List<int>::Node

-5 datum

next

List<int>::Node

4 datum

0x0 next

List<int>::Node

2 datum

next

last

Iterator

node_ptr0x0

Figure 28.2: A list past-the-end iterator has a null pointer as its stored node pointer.

invalidated, which will result in node_ptr pointing to an invalid node. Thus, there is no invariant that will hold for a
list iterator’s representation.

28.1 Iterator Definition

Before we proceed to implement Iterator, observe the following issues with its definition:

• Node is not a top-level type, but a member of the List class template, so it cannot be named from the outside
without the scope-resolution operator.

• The Node struct is private, so it cannot be accessed from outside code.

• The iterator type is associated with List, so it should be encapsulated within the List template.

We can solve these issues by defining Iterator as a member of the List template:

template <typename T>
class List {

...
private:
struct Node {
int datum;
Node *next;

};

public:
class Iterator {
public:

T & operator*() const;

Iterator &operator++();

(continues on next page)

28.1. Iterator Definition 196



Programming and Data Structures, Release 0.3

(continued from previous page)

bool operator==(Iterator rhs) const;

bool operator!=(Iterator rhs) const;
private:
Node *node_ptr;

};

private:
Node *first;
Node *last;

};

We must define the Iterator class after the definition of the Node struct so that Node is in scope when it is referenced
in the Iterator class.2 Iterator itself is part of the interface for List, so it is defined as public within List.

We can now implement the member functions of Iterator.

28.1.1 Dereference and Increment Operators

The dereference operator requires that the iterator is dereferenceable, which means that it is pointing to a valid element
in the container. We cannot in general check that this is the case, but we can check whether the iterator is a past-the-end
iterator:

// REQUIRES: this is a dereferenceable iterator
// EFFECTS: Returns the element that this iterator points to.
template <typename T>
T & List<T>::Iterator::operator*() const {

assert(node_ptr); // check whether this is a past-the-end iterator
return node_ptr->datum;

}

The operator*() function is a member of Iterator, which itself is a member of List<T> – thus, we need two
scope-resolution operators when referring to the function. After asserting that the iterator is not past the end, the
function just returns the datum member of the underlying node. The return is by reference, so that the element can be
modified through the iterator:

List<int> Iterator it = ...;
*it = 3; // LHS of assignment must be an object

The dereference operator does not modify the iterator. In addition, while the function returns an object by reference
to non-const, modifying that object does not modify the iterator, since the object is not a member of the iterator itself.
Thus, the dereference operator can be declared as a const member function.

The operator++() function modifies the iterator by moving it to “point to” the next element, so it cannot be declared
as const. As with dereference, the past-the-end iterator cannot be incremented – node_ptr would be null, and there
wouldn’t be a next pointer to move the iterator to.

// REQUIRES: this is a dereferenceable iterator
// EFFECTS: Returns the element that this iterator points to.
template <typename T>

(continues on next page)

2 The scope of a class member begins at the member declaration and includes the rest of the class body, all member-function bodies, and all
member-initializer lists.

28.1. Iterator Definition 197

https://en.cppreference.com/w/cpp/language/scope#Class_scope


Programming and Data Structures, Release 0.3

(continued from previous page)

typename List<T>::Iterator & List<T>::Iterator::operator++() {
assert(node_ptr); // check whether this is a past-the-end iterator
node_ptr = node_ptr->next;
return *this;

}

The function moves the iterator to the next element by following the next pointer of the current node. Once the iterator
has been moved, the function returns the iterator by reference, in keeping with the pattern for prefix increment.3

28.1.2 The typename Keyword

The return type of operator++() is a reference to List<T>::Iterator; Iterator is a member of a template that
is dependent on the template parameter T. C++ requires the typename keyword before a dependent name that refers to
a type, so that the compiler knows that it is a type and not a value.4

The following illustrates when the typename keyword is required:

template <typename U>
void func() {

IntList list; // not a qualified type
IntList::Iterator it1; // outer class does not depend on template parameter U
List<int>::Iterator it2; // outer class does not depend on template parameter U
typename List<U>::Iterator it3; // outer class depends on template parameter U
int capacity =
SortedSet<U>::MAX_CAPACITY; // member is not a type

}

An unqualified name, one without the scope-resolution operator, never needs the typename keyword. In a qualified
name, if the outer type does not depend on a template parameter, then no typename keyword is required. If the outer
type does depend on a template parameter, then the typename keyword is required when the inner name refers to a
type. If the inner name does not refer to a type, the typename keyword is erroneous to use, since it explicitly tells the
compiler that the inner name is a type.

In practice, compilers can often determine when the typename keyword is required, and many C++ programmers rely
on the compiler to tell them that it is needed rather than learning the rules:

$ g++ --std=c++17 foo.cpp
foo.cpp:5:20: error: expected ';' after expression
List<U>::Iterator it;

^
;

foo.cpp:5:21: error: use of undeclared identifier 'it'
(continues on next page)

3 The postfix increment operator can be overloaded as well. To distinguish its signature from prefix, C++ uses a dummy int parameter for postfix:

template <typename T>
typename List<T>::Iterator List<T>::Iterator::operator++(int) {

assert(node_ptr); // check whether this is a past-the-end iterator
Iterator tmp = *this; // make a copy of this iterator
node_ptr = node_ptr->next;
return tmp; // return the copy

}

We need not provide a parameter name, since we are not actually using the parameter object. In keeping with the contract for postfix increment,
the function returns a copy of the original iterator by value.

4 The reasons are beyond the scope of this course, but they have to do with the way the compiler instantiates templates.

28.1. Iterator Definition 198

http://pages.cs.wisc.edu/~driscoll/typename.html


Programming and Data Structures, Release 0.3

(continued from previous page)

List<U>::Iterator it;
^

foo.cpp:5:3: error: missing 'typename' prior to dependent type name
'List<int>::Iterator'

List<U>::Iterator it;
^~~~~~~~~~~~~~~~~

foo.cpp:9:3: note: in instantiation of function template specialization
'func<int>' requested here

func<int>();
^

3 errors generated.

28.1.3 Equality Comparisons

Two iterators are defined as equal if either they are both past the end, or they “point to” the same element in the same
list. Thus, they are equal exactly when their node_ptr members point to the same node.

List<int>

first
List<int>::Node

3 datum

next

List<int>::Node

-5 datum

next

List<int>::Node

4 datum

0x0 next

List<int>::Node

2 datum

next

last

List<int>::Iterator

node_ptr

List<int>::Iterator

node_ptr

Figure 28.3: Two iterators are equal when their node pointers store the same address, pointing to the same node.

Comparing two iterators does not require them to be dereferenceable or even pointing to a valid element. Thus, the
operators do not have a REQUIRES clause.

template <typename T>
bool List<T>::Iterator::operator==(Iterator rhs) const {
return node_ptr == rhs.node_ptr;

}

template <typename T>
bool List<T>::Iterator::operator!=(Iterator rhs) const {
return node_ptr != rhs.node_ptr;

}

28.1. Iterator Definition 199



Programming and Data Structures, Release 0.3

We do not need to qualify Iterator in the parameter type – once the compiler knows that we are defining a member
of Iterator, we can refer to the class with an unqualified name.

28.1.4 Creating Iterators

We have defined the operator overloads for Iterator. However, we have not provided a means of creating an Iterator
object. Without a user-defined constructor, we do get an implicit default constructor, but it just initializes node_ptr
with a junk value. Instead, we define the following two constructors:

• an explicit default constructor that makes the iterator a past-the-end iterator

• a constructor that takes in a pointer to a node

The latter is a private constructor – the Node class is not part of the interface for the list, so the constructor that takes a
node pointer also is not part of the interface, and the outside world would not be able to call it even if it were.

The constructor definitions are as follows:

template <typename T>
class List {

...
public:
class Iterator {
public:
// EFFECTS: Constructs a past-the-end iterator.
Iterator() : node_ptr(nullptr) {}

...
private:
// EFFECTS: Constructs an iterator from the given node pointer.
Iterator(Node *node_ptr_in) : node_ptr(node_ptr_in) {}

Node *node_ptr;
};

};

We can now implement begin() and end() member functions in List that return a start and past-the-end iterator,
respectively.

template <typename T>
class List {

...
public:
// EFFECTS: Returns an iterator that points to the first element,
// or a past-the-end iterator if this list is empty.
Iterator begin() {
return Iterator(first);

}

// EFFECTS: Returns a past-the-end iterator.
Iterator end() {
return Iterator();

}
};

28.1. Iterator Definition 200



Programming and Data Structures, Release 0.3

The begin() function returns an iterator that points to the first element in the list. However, if the list is empty, first
is null; this is the representation of a past-the-end iterator, so begin() returns such an iterator when the list is empty.
The end() function returns a default-constructed past-the-end iterator.

Unfortunately, the implementation of begin() does not compile:

./List.hpp:122:12: error: calling a private constructor of class
'List<int>::Iterator'

return Iterator(first);
^

A private member is only accessible from within the scope of the class that defines the member. The private Iterator
constructor is a member of Iterator, but it is being accessed from outside the Iterator class. On the other hand,
Iterator is within the scope of List, so it can access private List members such as Node. Thus, a nested class can
access private members of the outer class, but not vice versa.

28.2 Friend Declarations

The solution to the problem above is a friend declaration, in which a class gives an outside entity access to the class’s
private members.

template <typename T>
class List {

...
public:
class Iterator {
friend class List;
...

};
};

A friend declaration can appear anywhere directly within a class body, and it tells the compiler that the given entity
is allowed to access private members. The entity may be a function or a type; for instance, it is common practice to
define the insertion operator as a friend:

class Card {
...
private:
std::string rank;
std::string suit;

friend std::ostream & operator<<(std::ostream &os, const Card &card);
};

std::ostream & operator<<(std::ostream &os, const Card &card) {
return os << card.rank << " of " << card.suit;

}

Friendship is given, not taken. For instance, class C may declare F as a friend:

friend class F;

This allows F to access the private members of C, but it does not allow C to access the private members of F.

28.2. Friend Declarations 201



Programming and Data Structures, Release 0.3

The friend declaration completes our iterator implementation, so we can now perform a traversal by iterator:

List<int> list;
for (int i = 1; i < 5; ++i) {
list.push_back(i);

}

for (List<int>::Iterator it = list.begin(); it != list.end(); ++it) {
cout << *it << endl;

}

This is just an abstraction over a loop that uses a node pointer directly:

for (Node *node_ptr = list.first; node_ptr != nullptr;
node_ptr = node_ptr->next) {

cout << node_ptr->datum << endl;
}

The iterator starts at the first member, just like the traversal using a node pointer. Incrementing the iterator moves
it to the next node, the same as in the loop above. Dereferencing the iterator accesses the respective node’s datum
member, as in the body of the loop above. The traversal ends when the iterator reaches a null pointer, just like the
node-pointer loop. Thus, the iterator provides the same traversal as can be done from within the List template, but
with the interface of a pointer rather than having the user rely on implementation details.

28.3 Generic Iterator Functions

Iterators provide a common interface for traversing through a sequence of elements, and the standard-library sequences
all support the iterator interface.

vector<int> vec = { 1, 2, 3, 4 };
for (vector<int>::iterator it = vec.begin(); it != vec.end(); ++it) {
cout << *it << endl;

}

The common interface allows us to write generic functions that work on any sequence. For instance, we can write a
function template for finding the maximum element in a sequence:

// REQUIRES: end is after or equal to begin
// EFFECTS: Returns an iterator to the maximum element in [begin, end).
// Returns begin when the sequence is empty.
template <typename Iter_type>
Iter_type max_element(Iter_type begin, Iter_type end) {
Iter_type max_so_far = begin;
for (; begin != end; ++begin) {
if (*max_so_far < *begin) {

max_so_far = begin;
}

}
return max_so_far;

}

The max_element() function template takes a begin and end iterator of any type and returns an iterator to the max-
imum element that is between the two iterators. As is standard in C++, the end iterator is an exclusive bound – the

28.3. Generic Iterator Functions 202



Programming and Data Structures, Release 0.3

function stops when it reaches end and does not dereference it. Then max_element() implements a standard find-
the-max algorithm: start with the first element as the maximum so far, then update the max so far when a larger item
is encountered. The iterators must be dereferenced to get to the elements to compare them, and the element type must
support the < operator.

We can use max_element() with any iterator and element type, as long as the element type supports <:

vector<int> vec;
.. // fill vec with numbers
cout << *max_element(vec.begin(), vec.end()) << endl;

List<int> list;
.. // fill list with numbers
cout << *max_element(list.begin(), list.end()) << endl;

List<Card> cards;
.. // fill cards with Cards
cout << *max_element(cards.begin(), cards.end()) << endl;

int const SIZE = 10;
double arr[SIZE];
.. // arr fill with numbers
cout << *max_element(arr, arr + SIZE) << endl;

As usual with function templates, the compiler deduces the template parameter from the function arguments. The last
example illustrates that we can even use max_element() with an array; since a pointer has the same interface as an
iterator, we just need to provide max_element() with a pointer to the first element and another that is just past the end.

The standard <algorithm> library contains many function templates such as std::max_element() that operate on
iterators. However, the standard-library function templates require an iterator to define several member type aliases to
work:

template <typename T>
class List {

...
public:
class Iterator {
...

public:
using iterator_category = std::input_iterator_tag;
using value_type = T;
using difference_type = void;
using pointer = void;
using reference = T &;

};
};

A discussion of these type aliases is beyond the scope of this course.

As another example, the following is a function template that determines whether a sequence contains a duplicate item.
It compares every pair of elements with the == operator to determine if any are equal:

template <typename Iter_type>
bool no_duplicates(Iter_type begin, Iter_type end) {
for (; begin != end; ++begin) {

(continues on next page)

28.3. Generic Iterator Functions 203



Programming and Data Structures, Release 0.3

(continued from previous page)

Iter_type other = begin; // copy iterator to current element
++other; // move copy one element forward
for (; other != end; ++other) {
if (*begin == *other) { // compare element with those that come after
return false;

}
}

}
return true;

}

28.4 Iterator Invalidation

Recall that a dangling pointer points to an invalid object, one that is no longer alive. Since iterators represent indirection
to sequence elements, an iterator can also end up pointing to an invalid object. Such an iterator is said to be invalidated.
The following is an example:

List<int> list;
list.push_back(3);
list.push_back(-5);
list.push_back(2);
list.push_back(4);

List<int>::Iterator iter = list.begin();
cout << *iter << endl;

list.pop_front(); // invalidates iter

cout << *iter << endl; // UNDEFINED BEHAVIOR

The code constructs a list and inserts elements into it. It then creates an iterator that is pointing to the first element
before proceeding to remove that element. This invalidates the iterator, so that dereferencing the iterator results in
undefined behavior.

In general, modifying a sequence can invalidate existing iterators. An iterator may be invalidated even if the element
it is pointing to is not removed. For instance, a vector iterator is invalidated when a grow operation occurs, since the
element the iterator is pointing to moves to a different location. A member function’s documentation should indicate
whether it may invalidate iterators, as in the cppreference.com documentation for std::vector::push_back():

If the new size() is greater than capacity() then all iterators and references (including the past-the-end
iterator) are invalidated. Otherwise only the past-the-end iterator is invalidated.

28.4. Iterator Invalidation 204

https://en.cppreference.com/w/cpp/container/vector/push_back


Programming and Data Structures, Release 0.3

List<int>

first
List<int>::Node

3 datum

next

List<int>::Node

-5 datum

next

List<int>::Node

4 datum

0x0 next

List<int>::Node

2 datum

next

last

Iterator

node_ptr

Figure 28.4: Removing the element that an iterator is pointing to invalidates the iterator.

28.5 Type Deduction

Suppose we wanted to write a function template that prints out the elements of a sequence. We could write it to work
with iterators:

template <typename Iter_type>
void print_all(Iter_type begin, Iter_type end) {
for (Iter_type it = begin; it != end; ++it) {
cout << *it << endl;

}
}

On the other hand, we desire an interface that works directly on a sequence container:

template <typename Sequence>
void print_all(const Sequence &sequence) {
for (typename Sequence::Iterator it = sequence.begin();

it != sequence.end(); ++it) {
cout << *it << endl;

}
}

Declaring the iterator type is very verbose, as it consists of both a qualified name and the typename keyword, since the
qualified name is a dependent type. Furthermore, the declaration makes the assumption that the iterator type is named
Iterator, which is not true for standard-library containers that use lower-case type names.

Rather than writing out the type of it explicitly, we can ask the compiler to deduce it for us by using the auto keyword:

template <typename Sequence>
void print_all(const Sequence &sequence) {
for (auto it = sequence.begin(); it != sequence.end(); ++it) {
cout << *it << endl;

(continues on next page)

28.5. Type Deduction 205



Programming and Data Structures, Release 0.3

(continued from previous page)

}
}

The compiler deduces the type from its initialization. If the return type of sequence.begin() is
List<int>::Iterator, then the type of it is deduced to have type List<int>::Iterator. On the other hand, if
the return type is vector<Duck>::iterator, then the type of it is deduced to be vector<Duck>::iterator. The
return type need not be a nested type; if it is char *, then it will be deduced to have type char *. Thus, not only
does type deduction save us keystrokes for complicated types, it also abstracts over how the types are defined.

28.5. Type Deduction 206



Part IV

Functional Programming

207



CHAPTER

TWENTYNINE

FUNCTION OBJECTS

Last time, we saw iterators, which are a common interface for traversing over the elements of a sequence. For instance,
the following function template works over any sequence of integers, determining if there is and odd element in the
sequence:

// REQUIRES: begin is before or equal to end
// EFFECTS: Returns true if any element in the sequence
// [begin, end) is odd.
template <typename Iter_type>
bool any_of_odd(Iter_type begin, Iter_type end) {
for (Iter_type it = begin; it != end; ++it) {
if (*it % 2 != 0) {
return true;

}
}
return false;

}

We can then use any_of_odd() with any sequence type, as long as the elements are integers:

List<int> list;
vector<int> vec;
int array[10];
...
cout << any_of_odd(list.begin(), list.end()) << endl;
cout << any_of_odd(vec.begin(), vec.end()) << endl;
cout << any_of_odd(array, array + 10)) << endl;

The template is generic over the iterator type, but it is not generic over the condition that an element must meet – it only
searches for odd elements and no other characteristic. Suppose we wanted instead to determine whether the sequence
contains an even element. We could write an any_of_even() template:

// REQUIRES: begin is before or equal to end
// EFFECTS: Returns true if any element in the sequence
// [begin, end) is even.
template <typename Iter_type>
bool any_of_even(Iter_type begin, Iter_type end) {
for (Iter_type it = begin; it != end; ++it) {
if (*it % 2 == 0) {
return true;

}
}

(continues on next page)

208



Programming and Data Structures, Release 0.3

(continued from previous page)

return false;
}

This code is almost exactly the same as that for any_of_odd(); the only difference is the computation done in the
test of the conditional. Most of the code is duplicated, which is undesirable. Furthermore, if we wanted to determine
whether a sequence contained an element that met some other condition, say whether an element is positive, we would
have to write additional function templates that duplicate code.

Our general strategy for avoiding code duplication in a procedural abstraction is to introduce parameters for the pieces
that differ. For a value that differs, we add a function parameter:

int power3(int x) {
int result = 1;
for (int i = 0; i < 3; ++i) {
result *= x;

}
return result;

}

int power4(int x) {
int result = 1;
for (int i = 0; i < 4; ++i) {
result *= x;

}
return result;

}

int power(int x, int n) { // add parameter to generalize
int result = 1;
for (int i = 0; i < n; ++i) {
result *= x;

}
return result;

}

int main() {
for (int i = 0; i < 10; ++i) {
cout << power(42, i); // supply desired argument

}
}

When it is a type that differs, we make the function a template and introduce a template parameter:

int max_int(int x, int y) {
return x < y ? y : x;

}

Card max_card(const Card &x, const Card &y) {
return x < y ? y : x;

}

template <typename T> // add template parameter to generalize
T max(const T &x, const T &y) { // pass objects of template-parameter type

(continues on next page)

209



Programming and Data Structures, Release 0.3

(continued from previous page)

// by reference
return x < y ? y : x;

}

int main() {
cout << max(3, -1) << endl; // template parameter deduced from arguments
cout << max(Card(Card::RANK_TWO, Card::SUIT_SPADES),

Card(Card::RANK_TOW, Card::SUIT_HEARTS)) << endl;
}

For a generic any_of(), however, it is an actual computation that differs: *it % 2 != 0 for odd numbers, *it
% 2 == 0 for even numbers, *it > 0 for positive numbers, and so on. We can use a function to represent such a
computation:

bool is_odd(int x) {
return x % 2 != 0;

}

bool is_even(int x) {
return x % 2 == 0;

}

bool is_positive(int x) {
return x > 0;

}

Once we have a function, the compiler translates it into machine code, which is placed in memory in the text segment
when the program runs.

Since the code is in memory, we can construct a pointer to it:

bool (*func)(int) = &is_odd;
func = &is_even;

As the examples above demonstrate, we can apply the address-of operator to a function to obtain its address, just like
for an object. Unlike an object, however, the address-of operator is optional:

func = is_positive;

The compiler implicitly inserts the operator for us.

We can call a function through a pointer by first dereferencing the pointer:

bool (*func)(int) = is_odd;
(*func)(-2); // returns false

Like with the address-of operator, the compiler can implicitly insert this dereference for us:

func(-2); // returns false

210



Programming and Data Structures, Release 0.3

Stack
(grows down)

THE BIG VOID

Heap
(grows up)

Static Storage
(Fixed size)

Text
(The program)

Address MAX

Address 0

Figure 29.1: The memory for a program includes a segment that stores the program’s code.

29.1 Function-Pointer Types

Before we proceed to implement a generic any_of(), let us examine the syntax of a function pointer more closely.

bool (*func)(int);

C++ declarations are generally read from right to left. However, the parentheses around *func associate the * symbol
with the name func. Without the parentheses, we would have the following:

bool *func2(int);

This is a declaration of a function called func2 that takes in an int and returns a pointer to a bool – the * is associated
with the return type rather than the name func2.

With the parentheses, the * has the same meaning as for other variables: it indicates that the variable we are declaring
is a pointer. Thus, func is a pointer. The rest of the declaration tells us what kind of pointer it is: a pointer to a function
that takes an int as a parameter and returns a bool.

To declare an appropriate function pointer, we can use the following steps:

• Start with a function signature:

int max_int(int x, int y);

• Remove the parameter names, which serve only as documentation in a declaration:

int max_int(int, int);

29.1. Function-Pointer Types 211



Programming and Data Structures, Release 0.3

• Replace the function name with a variable name and the * symbol to indicate it is a pointer, surrounded by
parentheses:

int (*func3)(int, int);

The result is that func3 is a pointer to a function that takes two ints and returns an int.

29.2 Function-Pointer Parameters

We can now write a generic any_of() that is parameterized both by an iterator type as well as a function to test an
element:

template <typename Iter_type>
bool any_of(Iter_type begin, Iter_type end, bool (*func)(int)) {
for (Iter_type it = begin; it != end; ++it) {
if (func(*it)) {
return true;

}
}
return false;

}

Since different iterators may have different types, we use a template parameter to allow an arbitrary kind of iterator.
For the test of whether an element satisfies a condition, we add a function parameter that is a pointer to a function. We
call it using parentheses like any other function, and the compiler automatically dereferences the pointer to get to its
code.

We can then specify which function to use when calling any_of():

List<int> list;
vector<int> vec;
int array[10];
...
cout << any_of(list.begin(), list.end(), is_odd) << endl;
cout << any_of(vec.begin(), vec.end(), is_even) << endl;
cout << any_of(array, array + 10, is_positive)) << endl;

The compiler implicitly takes the address of a function when we pass it to a function pointer.

Functions that take in an item and return a truth value are quite common, and they are called predicates. Thus, a better
name for the function-pointer parameter in any_of() would be pred rather than func.

// REQUIRES: begin is before or equal to end
// EFFECTS: Returns true if pred returns true when applied to at
// least one element in the sequence [begin, end).
template <typename Iter_type>
bool any_of(Iter_type begin, Iter_type end, bool (*pred)(int)) {
for (Iter_type it = begin; it != end; ++it) {
if (pred(*it)) {
return true;

}
}
return false;

}

29.2. Function-Pointer Parameters 212



Programming and Data Structures, Release 0.3

29.3 Functors

With any_of() and is_positive(), we can determine whether a sequence contains an element that is greater than
zero. What if we are interested in other thresholds, such as 32 or 212? We don’t want to write separate functions for
each value, as this duplicates code:

bool greater32(int x) {
return x > 32;

}

bool greater212(int x) {
return x > 212;

}

Since what differs is just a value, we can write a function that has a parameter for the threshold value:

bool greater(int x, int threshold) {
return x > threshold;

}

Unfortunately, we cannot use this with any_of(): it requires a pointer to a function that takes in one argument, not
two:

main.cpp:29:11: error: no matching function for call to 'any_of'
cout << any_of(arr, arr + SIZE, greater) << endl;

^~~~~~
main.cpp:13:6: note: candidate function not viable: no known conversion from

'bool (int, int)' to 'bool (*)(int)' for 3rd argument
bool any_of(Iter_type begin, Iter_type end, bool (*pred)(int)) {

^
1 error generated.

Furthermore, we need some way of specifying the threshold, and passing the greater() function directly to any_of()
does not do so. What we need is something that internally stores the threshold value and is callable with just one
argument.

More specifically, we want a first-class entity, which is an entity that supports the following:

• It can store state.

• It can be created at runtime.

• It can be passed as an argument or returned from a function.

Unfortunately, functions are not first-class entities in C++: they cannot be created at runtime, and they are very limited
in how they can store information.1

Class types, on the other hand, do define first-class entities. A class-type object can store state in member variables,
can be created at runtime, and can be passed between functions. So a class type could satisfy our needs, as long as
there were a way to call it like a function. In fact, C++ does allow a class-type object to be called if the class overloads
the function-call operator. We refer to such a class as a functor.

A functor is a class type that provides the same interface as a function, much like an iterator is a class type that provides
the same interface as a pointer. The following is a GreaterN class that stores a threshold and is also callable with a
single argument:

1 A function may have a static local variable, but it can only store a single value at a time. We need an arbitrary amount of storage – for instance,
we may have any number of threshold values we care about for greater(), so we need a way of creating multiple copies of the function that each
have their own stored threshold value.

29.3. Functors 213



Programming and Data Structures, Release 0.3

class GreaterN {
public:
// EFFECTS: Creates a GreaterN with the given threshold.
GreaterN(int threshold_in) : threshold(threshold_in) {}

// EFFECTS: Returns whether or not the given value is greater than
// this GreaterN's threshold.
bool operator()(int x) const {
return x > threshold;

}

private:
int threshold;

};

The function-call operator must be overloaded as a member function, so it has an implicit this pointer that allows us to
access a member variable. We have declared the this pointer as a pointer to const, since the function does not modify
the GreaterN object. We also get to decide what the parameters are, as well as the return type. We have chosen a
single parameter of type int and a bool return type, since we want a GreaterN object to act as a predicate on ints.

We can create and use GreaterN objects as follows:

int main() {
GreaterN greater0(0);
GreaterN greater32(32);
GreaterN greater212(212);

cout << greater0(-5) << endl; // 0 (false)
cout << greater0(3) << endl; // 1 (true)

cout << greater32(9) << endl; // 0 (false)
cout << greater32(45) << endl; // 1 (true)

cout << greater212(42) << endl; // 0 (false)
cout << greater212(451) << endl; // 1 (true)

}

We have declared GreaterN objects as local variables and initialized them by calling the constructor, the same as
other class-type objects. We can then use a GreaterN object as the first operand of the function-call operator. We
pass whatever arguments are needed to invoke the overloaded member function, and as with any non-static member
function, the this parameter is implicitly passed.

A GreaterN object provides the same interface as the functions required by any_of(). However, it is not a function or
a pointer to a function; its type is GreaterN, and it cannot be passed to the version of any_of() we wrote previously.
Instead, we need to write a new version that allows predicates of any type. Since it is a type that differs, we add a
template parameter to refer to that type:

// REQUIRES: begin is before or equal to end
// EFFECTS: Returns true if pred returns true when applied to at
// least one element in the sequence [begin, end).
template <typename Iter_type, typename Predicate>
bool any_of(Iter_type begin, Iter_type end, Predicate pred) {
for (Iter_type it = begin; it != end; ++it) {
if (pred(*it)) {

(continues on next page)

29.3. Functors 214



Programming and Data Structures, Release 0.3

main

Stack

GreaterN::operator()

-5 x

greater212
GreaterN

212 threshold

greater32
GreaterN

32 threshold

greater0
GreaterN

0 threshold

this

Figure 29.2: Invoking the overloaded function-call operator of a GreaterN object.

(continued from previous page)

return true;
}

}
return false;

}

Like iterators, functors are generally passed by value. We can now use any_of() with a GreaterN object:

List<int> list;
... // fill list with numbers
GreaterN greater0(0);
cout << any_of(list.begin(), list.end(), greater0); // pass existing functor
cout << any_of(list.begin(), list.end(), GreaterN(32)); // pass temporary functor

The compiler deduces the template parameter Iter_type as List<int>::Iterator, and the parameter Predicate
as GreaterN. We can still call any_of() with a function pointer:

cout << any_of(list.begin(), list.end(), is_odd); // pass function

In this case, the compiler deduces Predicate as the function-pointer type bool (*)(int).

By parameterizing any_of() with the predicate type, we can now call it on sequences of objects that are of types other
than int. As long as a sequence element can be passed to the predicate, the code will work.

bool is_empty(const string &s) {
return s.empty();

}

(continues on next page)

29.3. Functors 215



Programming and Data Structures, Release 0.3

(continued from previous page)

int main() {
vector<string> vec;
... // fill vec with strings
cout << any_of(vec.begin(), vec.end(), is_empty);

}

Exercise 1 Write a function list_count() that counts the number of elements in a list for which the given
predicate returns true. Assume that Node is defined as

struct Node {
int datum;
Node *next;

};

and use recursion to traverse the sequence of nodes.

// EFFECTS: Returns the number of elements in the list that
// starts at the given node for which the predicate
// returns true.
template <typename Predicate>
int last(const Node *node, Predicate pred) {
// your code here

}

29.4 Comparators

Recall the max_element() function template from last time:

// REQUIRES: end is after or equal to begin
// EFFECTS: Returns an iterator to the maximum element in [begin, end).
// Returns begin when the sequence is empty.
template <typename Iter_type>
Iter_type max_element(Iter_type begin, Iter_type end) {
Iter_type max_so_far = begin;
for (; begin != end; ++begin) {
if (*max_so_far < *begin) {

max_so_far = begin;
}

}
return max_so_far;

}

The function template uses the < operator to compare elements, so it only works on types that provide that operator.
It will not work with a type such as Duck that does not overload the less-than operator. However, we may still want to
compare Ducks according to some criteria, such as by their names or their ages. Thus, we need a way of specifying
how max_element() should compare objects. We can do so by adding another parameter to represent a comparator,
which takes two objects and returns a value that indicates how they compare to each other.

// REQUIRES: end is after or equal to begin
// EFFECTS: Returns an iterator to the maximum element in [begin, end)

(continues on next page)

29.4. Comparators 216



Programming and Data Structures, Release 0.3

(continued from previous page)

// according to the given comparator. Returns begin when
// the sequence is empty.
template <typename Iter_type, typename Comparator>
Iter_type max_element(Iter_type begin, Iter_type end,

Comparator less) {
Iter_type max_so_far = begin;
for (; begin != end; ++begin) {
if (less(*max_so_far, *begin)) {
max_so_far = begin;

}
}
return max_so_far;

}

Standard comparators in C++ do a less-than comparison, so we have modified max_element() to take in such a
comparator. The type of the comparator is a template parameter so that either a functor or a function pointer can be
used. The code then calls the comparator with two arguments to determine if the first is less than the second.

We can write a Duck comparator that compares two ducks by name:

class DuckNameLess {
public:
bool operator()(const Duck &d1, const Duck &d2) const {
return d1.get_name() < d2.get_name();

}
};

Here, we have written the comparator as a functor; since it doesn’t require any storage, it could have been written as a
function as well.2 We can then call max_element() as follows:

vector<Duck> vec;
... // fill vec with Ducks
cout << (*max_element(vec.begin(), vec.end(), DuckNameLess())).get_name();

We pass a default-constructed DuckNameLess object as the comparator and get back an iterator to the Duck with the
maximum name. We then dereference the iterator to get to the Duck object and call get_name() on it.3

Given our modifications to max_element(), we can no longer call it without a comparator argument, even for types
that support the < operator. However, the standard <algorithm> library provides a functor template std::less that
just invokes the < operator, so we can use it with types that do have the operator:

vector<int> vec;
... // fill vec with numbers
cout << *max_element(vec.begin(), vec.end(), std::less<int>());

It is also possible to write max_element() to default to using std::lesswhen a comparator is not explicitly provided,
but that is beyond the scope of this course.

2 While either a functor or function would work, functors are actually more efficient since calling them does not require any indirection. The
compiler can statically determine from the functor type which overloaded operator is called, while calling through a function pointer generally
requires a dereference at runtime. Thus, functors are usually preferred over functions given a choice between the two.

3 Standard-library iterators overload the -> operator, so we could use that operator to call get_name() directly rather than manually applying
dereference followed by the dot operator.

29.4. Comparators 217



Programming and Data Structures, Release 0.3

29.5 Iterating over a Sequence

Another common pattern is to iterate over a sequence, performing some operation on each element individually. We
can write a for_each() function template that implements this pattern, taking in a function pointer or functor that
applies to a single element:

// REQUIRES: end is after or equal to end
// EFFECTS: Applies func to each of the elements in the sequence
// [begin, end) and returns func.
template <typename Iter_t, typename Func_t>
Func_t for_each(Iter_t begin, Iter_t end, Func_t func) {
for (Iter_t it = begin; it != end; ++it) {
func(*it);

}
return func;

}

We return the func argument, in case it contains data that are useful to the caller. For instance, the following functor
stores the sum of integer elements:

class Accumulator {
public:
void operator()(int x) {
sum += x;

}

int get_sum() const {
return sum;

}

private:
int sum = 0;

};

We can then compute the sum of the elements in a sequence:

vector<int> vec;
... // fill vec with numbers
Accumulator summer;
summer = for_each(vec.begin(), vec.end(), summer);
cout << summer.get_sum() << endl;

To print out the elements in a sequence to a stream, we can write a functor template for printing:

template <typename T>
class Printer {
public:
Printer(std::ostream &os) : output(os) {}

void operator()(const T &item) const {
output << item << std::endl;

}

(continues on next page)

29.5. Iterating over a Sequence 218



Programming and Data Structures, Release 0.3

(continued from previous page)

private:
std::ostream &output;

};

The member variable must be a reference, since streams do not generally support copying. We can then use Printer
to print out each element in a sequence:

int main() {
List<int> list;
... // fill list with numbers
ofstream fout("list.out");
for_each(list.begin(), list.end(), Printer<int>(fout));

}

29.5. Iterating over a Sequence 219



CHAPTER

THIRTY

IMPOSTOR SYNDROME

In addition to building our programming skills, it is also important to develop an appropriate awareness of our own abil-
ities. Unfortunately, many of us encounter impostor syndrome, where we do not internalize our own accomplishments.
Despite demonstrating success in a course like this, we often fear being exposed as a “fraud.”

Recognizing impostor syndrome is the first step to overcoming it. The following are common characteristics of people
who have impostor syndrome:

• They attribute their success to external factors.

• They fear being revealed as a fraud.

• They convince themselves that they are not good enough.

• They have a hard time accepting compliments for their accomplishments.

Impostor syndrome differs from implicit bias in that the latter affects how we subconsciously view others, while the
former affects how we view ourselves. The National Center for State Courts defines implicit bias as:

The bias in judgment and/or behavior that results from subtle cognitive processes (e.g., implicit attitudes
and stereotypes) that often operate at a level below conscious awareness and without intentional control.

Of course, these implicit attitudes also affect how we view ourselves, so even though impostor syndrome affects every-
one, it tends to have a higher effect on people in underrepresented groups.

The result of impostor syndrome is to doubt ourselves, having feelings such as:

• “I was hired to fill a diversity quota.”

• “Everyone else seems smarter than me.”

• “If I’m not getting an A, how am I going to survive in future courses?”

• “Nobody else here is like me – I don’t belong in this class”.

• “I don’t like asking questions in class because I’m afraid others will realize I don’t know what I’m doing.”

• “Maybe EECS isn’t for me; I should drop.”

The truth is that almost everyone suffers from feelings like this. Surveys on impostor syndrome have found that “about
70 percent of people from all walks of life – men and women – have felt like impostors for at least some part of their
careers.”4 The likelihood is that many of us are experiencing this right now, in this course.

There are steps we can take to overcome impostor syndrome:

• Stop comparing ourselves to others.

• Encourage each other.

• Join student organizations and connect with other students.
4 Gravois, J. (2007). You’re not fooling anyone. The Chronicle of Higher Education, 54(11), A1.

220

https://www.chronicle.com/article/Youre-Not-Fooling-Anyone/28069


Programming and Data Structures, Release 0.3

• Accept our accomplishments.

• Find a mentor.

We do not have to experience this alone; instead, we should support each other and find others we can lean on.

The following are additional resources on impostor syndrome:

• University of Michigan CAPS page on impostor syndrome

• TED talk on how students of color confront impostor syndrome

• American Psychological Association article on impostor syndrome

221

https://caps.umich.edu/article/imposter-syndrome
https://www.ted.com/talks/dena_simmons_how_students_of_color_confront_impostor_syndrome
https://www.apa.org/gradpsych/2013/11/fraud


CHAPTER

THIRTYONE

RECURSION

We have seen several forms of abstraction, where we use something for what it does rather than how it works. It can
be useful to refer to an abstraction when we are still in the middle of implementing it. For instance, our definition of a
linked-list node refers to itself:

struct Node {
int datum;
Node *next;

};

Such a definition is recursive, where it uses itself as part of its definition.

Functions can also be recursive. As an example, consider the factorial of a nonnegative integer:

𝑛! =

{︃
1 if 𝑛 = 0 or 𝑛 = 1

𝑛 * (𝑛− 1) * · · · * 1 otherwise

We can implement an iterative function to compute this:

// REQUIRES: n >= 0
// EFFECTS: Computes and returns n!.
int factorial(int n) {
int result = 1;
while (n > 0) {
result *= n;
--n;

}
return result;

}

On the other hand, we can observe that (𝑛− 1)! = (𝑛− 1) * · · · * 1, so that we can mathematically define factorial in
terms of itself:

𝑛! =

{︃
1 if 𝑛 = 0 or 𝑛 = 1

𝑛 * (𝑛− 1)! otherwise

Such a mathematical definition is called a recurrence relation. It translates into code as follows:

// REQUIRES: n >= 0
// EFFECTS: Computes and returns n!.
int factorial(int n) {
if (n == 0 || n == 1) {
return 1;

(continues on next page)

222



Programming and Data Structures, Release 0.3

(continued from previous page)

} else {
return n * factorial(n - 1);

}
}

This function is recursive, since it calls itself as part of its definition. We can then call factorial() as follows:

int main() {
int result = factorial(3);
cout << "3! = " << result << endl;

}

The activation records created by this program are shown in Figure 31.1.

Stack

main
0x1000 ? result

Stack

main
0x1000 ? result

factorial
0x1004 3 n

Stack

main
0x1000 ? result

factorial
0x1004 3 n

factorial
0x1008 2 n

Stack

main
0x1000 ? result

factorial
0x1004 3 n

factorial
0x1008 2 n

factorial
0x100c 1 n

Figure 31.1: Activation records for a call to the recursive version of factorial().

When the call factorial(3) is evaluated, an activation record is created, and the parameter n is initialized with value
3. The body of factorial() runs, and it calls factorial(2). This creates another activation record, and its param-
eter n is initialized to 2. Within the context of that activation record, the body of factorial() is executed, and it calls
factorial(1). Another activation record is created, with n initialized to 1. The body runs, returning 1, which replaces
the function call in the caller. The activation record for factorial(1) is destroyed, and factorial(2) resumes. The
latter computes 2 * 1 and returns 2. The activation record for factorial(2) is destroyed, and factorial(3) con-
tinues where it left off. It computes 3 * 2, returning 6. Its activation record is reclaimed, and main() resumes,
initializing result to 6, the correct value for 3!.

Operationally, the recursive definition works because each invocation of factorial() gets its own activation record,
and the body of the function is executed within the context of that activation record. More conceptually, it works by
using factorial() as an abstraction, even while we are still in the midst of implementing that abstraction! We call
this “the recursive leap of faith” – we trust that the abstraction works, even if we haven’t finished writing it yet.

In general, a recursive abstraction requires the following:

• base cases, which are cases we can implement directly without recursion

• recursive cases, where we break down the problem into subproblems that are similar to the problem but “smaller,”
meaning closer to a base case

As another example, the following recursive function prints out the integers between a start and end:

223



Programming and Data Structures, Release 0.3

// REQUIRES: end >= start
// MODIFIES: cout
// EFFECTS: Prints the numbers in [start, end) in order.
void print_numbers(int start, int end) {
// base case
if (start == end) {
return;

}
// recursive case
cout << start << endl;
print_numbers(start + 1, end);

}

The base case is when the start and end are the same, in which case the function immediately returns without printing
anything. The recursive case prints out a single number and then recursively computes the subproblem of printing the
numbers in [𝑠𝑡𝑎𝑟𝑡 + 1, 𝑒𝑛𝑑). The latter is smaller than the original problem, since it requires printing out one fewer
number.

Let us consider another example, that of computing the number of ducks on a duck farm. Suppose the farm starts
with five baby ducklings. Assume that a duck lays three eggs each month, once the duck is at least a month old itself.
Furthermore, an egg takes a month to hatch, and our ducks never die. How many ducks does the farm have after 𝑛
months?

We start by working out the first few months by hand. In month 0, there are 5 baby ducklings, which are not old enough
to lay eggs. In month 1, there are now 5 grown ducks, each of which lays 3 eggs, resulting in 15 eggs in total. Let’s
use a table to keep track of what we have:

Month Adult Ducks Ducklings Eggs Total Ducks
0 0 5 0 5
1 5 0 15 5
2 5 15 15 20
3 20 15 60 35
4 35 60 105 95
5 95 105 285 200

In month 2, the 15 eggs hatch, resulting in 15 ducklings. The 5 adult ducks lay 15 more eggs. In month 3, these eggs
hatch, resulting in 15 ducklings. The previous 15 ducklings are now adults, so that we have a total of 20 adult ducks,
which lay 60 eggs. And so on in months 4 and 5. The total number of ducks is 200 at month 5.

We observe that the number of adult ducks in any particular month is the same as the total number of ducks in the
previous month. The number of ducklings in a month is three times the number of adult ducks in the previous month,
which is the same as the total number of ducks in the month before. This results in the following recurrence relation
for the total number of ducks:

𝑑𝑢𝑐𝑘𝑠(𝑛) =

{︃
5 if 𝑛 = 0 or 𝑛 = 1

𝑑𝑢𝑐𝑘𝑠(𝑛− 1) + 3 * 𝑑𝑢𝑐𝑘𝑠(𝑛− 2) otherwise

The base cases are the first two months, when there are 5 total ducks. (We cannot apply the recurrence for these cases,
since it would rely on the number of ducks in month -1, which is ill-defined.)

We can now write a function to compute the number of ducks:

// REQUIRES: n >= 0
// EFFECTS: Computes the number of ducks in month n, assuming 5

(continues on next page)

224



Programming and Data Structures, Release 0.3

(continued from previous page)

// ducklings to start.
int num_ducks(int n) {
// base cases
if (n <= 1) {
return 5;

}
// recursive case
return num_ducks(n - 1) + 3 * num_ducks(n - 2);

}

Observe that there are two subproblems here, ducks(n - 1) and ducks(n - 2). Both are closer to a base case than
ducks(n), so the recursive computation still works.

Recursive algorithms are not just for math problems. The following is an algorithm for lifting a box of heavy books:

void lift_box(Box &box) {
if (too_heavy(box)) { // recursive case
Book book = remove_book(box);
lift_box(box); // "smaller" box
add_book(box, book);

} else { // base case
move_box(box);

}
}

Here, the base case is when we can directly move the box, such as when it is empty. Otherwise, we reduce the problem
of moving a heavy box to the subproblem of a box with one less book, using recursion to solve that subproblem. We
take the recursive leap of faith that the function will correctly solve that subproblem. We then need only add back the
book we removed.

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Heavy Book

Figure 31.2: Recursive algorithm for lifting a box of heavy books.

As another non-math example, we write a recursive function to reverse the contents of an array. For an empty array or
an array with one element, nothing needs to be done, constituting the base case. Otherwise, we reverse a smaller array,

225



Programming and Data Structures, Release 0.3

one that excludes the ends, and then swap the two ends:

// EFFECTS: Reverses the array starting at 'left' and ending at
// (and including) 'right'.
void reverse(int *left, int *right) {
if (left < right) {
reverse(left + 1, right - 1);
int temp = *left;
*left = *right;
*right = temp;

}
}

The function reverses the elements in [𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡]. The subproblem is the set of elements in [𝑙𝑒𝑓𝑡 + 1, 𝑟𝑖𝑔ℎ𝑡 − 1],
which is closer to the base case of an array with zero or one element. As always, we take the recursive leap of faith that
the subproblem will be computed correctly.

We can call reverse() as follows:

int main() {
const int SIZE = 8;
int array[SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8 };
reverse(array, array + SIZE - 1); // reverse whole array
reverse(array + 1, array + 3); // reverse elements 1-3

}

31.1 Tail Recursion

Consider the efficiency of the reverse() function above. For an array of size 𝑛, it performs ⌊𝑛/2⌋ swap operations,
taking O(𝑛) time. The algorithm also uses O(𝑛) space: each recursive call has an activation record, and there are
⌊𝑛/2⌋+ 1 total calls.

On the other hand, the following iterative algorithm uses only a single activation record, resulting in constant, O(1),
space:

// EFFECTS: Reverses the array starting at 'left' and ending at
// (and including) 'right'.
void reverse(int *left, int *right) {
while (left < right) {
int temp = *left;
*left = *right;
*right = temp;
++left;
--right;

}
}

The fundamental difference is that this algorithm solves the subproblem after doing the extra work for the original
problem, i.e. swapping the two ends. An equivalent recursive implementation would be the following:

// EFFECTS: Reverses the array starting at 'left' and ending at
// (and including) 'right'.
void reverse(int *left, int *right) {

(continues on next page)

31.1. Tail Recursion 226



Programming and Data Structures, Release 0.3

(continued from previous page)

if (left < right) {
int temp = *left;
*left = *right;
*right = temp;
reverse(left + 1, right - 1);

}
}

Here, the recursive call is a tail call, meaning that the call is the last thing that happens in the function, and no work is
done after the tail call returns.1 Since no work is done after the tail call, there is no need to retain the activation record
of the caller, and it can be discarded.

Many compilers recognize tail calls and perform tail-call optimization (TCO), where the activation record for the tail
call reuses the space of the caller’s activation record. In the g++ compiler, TCO is enabled at optimization level 2 (-O2).
TCO is not restricted to recursive functions; as long as a function call is the last thing that happens in its caller, it is a
tail call and the optimization can apply. However, tail-call optimization is most important for recursive functions, since
it can reduce the space usage of the computation by a large factor.

A function is said to be tail recursive if it is recursive, and all recursive calls are tail calls. Rather than using a linear
amount of space, a tail-recursive computation requires only constant space when tail-call optimization is applied. For
instance, the tail-recursive version of reverse() uses space for only a single activation record under TCO.

In order for a computation to be tail recursive, it must do all its work in the active flow of the computation, before
making a recursive call. A computation that does its work in the passive flow must wait until a recursive call completes
before doing work, so that the recursive call is not a tail call.

As a concrete example, the prior recursive implementation of factorial() is not tail recursive, since it does its work
in the passive flow:

int factorial(int n) {
if (n == 0 || n == 1) {
return 1;

} else {
return n * factorial(n - 1);

}
}

The multiplication must be done after the recursive call returns, so the function is not tail recursive.

For the function to be tail recursive, we need the multiplication to be in the active flow. To do so, we compute 𝑛 in the
initial call to factorial() on 𝑛, 𝑛 * (𝑛− 1) in the call on 𝑛− 1, 𝑛 * (𝑛− 1) * (𝑛− 2) in the call on 𝑛− 2, and so
on until we reach 1. At each step, we keep track of the product so far:

int factorial(int n, int resultSoFar) {
if (n == 0 || n == 1) {
return resultSoFar;

} else {
return factorial(n - 1, n * resultSoFar);

}
}

To call this function, we need to seed resultSoFar with the multiplicative identity of 1:
1 Whether or not a function call is a tail call is not a syntactic property, but is determined by whether or not work must be done after the call

returns. For example, if a nontrivial destructor for a local variable must be run after the call returns, the call is not a tail call.

31.1. Tail Recursion 227



Programming and Data Structures, Release 0.3

cout << factorial(5, 1) << endl;

However, this is a different interface than our previous versions of factorial(). To retain the same interface, we
move the actual computation to a helper function and abstract the call to it:

static int factorial_helper(int n, int resultSoFar) {
if (n == 0 || n == 1) {
return resultSoFar;

} else {
return factorial_helper(n - 1, n * resultSoFar);

}
}

int factorial(int n) {
return factorial_helper(n, 1);

}

Helper functions are a common pattern for tail-recursive computations that require a seed value. Not all tail-recursive
algorithms require a helper function, however; the tail-recursive print_numbers() and reverse() functions above
do not need a seed value, so they work without helper functions.

31.2 Kinds of Recursion

We have now seen several different kinds of recursion. A function is linear recursive if it is recursive, but each invocation
of the function makes at most one recursive call. Such a function reduces each recursive case to a single subproblem.
The various recursive factorial() and reverse() functions above are all linear recursive.

A function is tail recursive if it is linear recursive, and every recursive call is the last thing that happens in the invocation
that makes the recursive call. We have seen both tail-recursive and non-tail-recursive variants of reverse() and
factorial().

A function is tree recursive if a single invocation of the function can make more than one recursive call. Such a function
subdivides a recursive case into multiple subproblems. The num_ducks() function above is tree recursive. Drawing
out the recursive call graph for a tree-recursive function, we end up with a branching structure that resembles a tree,
explaining the nomenclature.

num_ducks(4)

num_ducks(2)

num_ducks(1) num_ducks(0)

num_ducks(3)

num_ducks(2) num_ducks(1)

num_ducks(1) num_ducks(0)

Figure 31.3: Call structure of a tree-recursive function.

31.2. Kinds of Recursion 228



Programming and Data Structures, Release 0.3

31.3 Iteration vs. Recursion

Iteration and recursion are two approaches to solving complex problems. Conceptually, an iterative algorithm often
divides a computation into individual discrete steps, the combination of which forms a solution to the whole problem.
In contrast, recursive algorithms generally express a computation in terms of smaller versions of the same problem.

Both iteration and recursion have the same computational power; an iterative algorithm can be converted to a tail-
recursive implementation and vice versa. A non-tail-recursive computation can also be rewritten iteratively; however,
the iterative version may require explicit storage. The non-tail-recursive algorithm can store data in multiple activation
records, while the iterative one only has a single activation record to work with, so it may need an explicit data structure
such as a vector to store its data. Techniques such as dynamic programming can be used in general to convert a recursive
algorithm to an iterative one, but they are beyond the scope of this course.

31.3. Iteration vs. Recursion 229



CHAPTER

THIRTYTWO

STRUCTURAL RECURSION

Last time, we discussed the concept of recursion, where an abstraction uses itself as part of its implementation, and
we saw its application to procedural abstractions. We turn our attention now to structural recursion, where we use
recursion in defining the representation of an abstract data type.

32.1 Recursive Lists

The data representation of a linked list is an example of structural recursion: the Node type uses itself in its own
representation:

struct Node {
int datum;
Node *next;

};

This representation satisfies the requirements for a recursive abstraction:

• The empty list is the base case, represented by a null pointer.

• A non-empty list is a recursive case; it can be subdivided into the first node and the rest of the list, which represents
a list in its own right.

Node

1 datum

next

Node

2 datum

next

Node

4 datum

0x0 next

Node

3 datum

next

Smaller list

Figure 32.1: The representation of a non-empty list consists of a node followed by the representation of a smaller list.

Independent of its representation, a linked list can actually be defined recursively as either an empty list, or a datum
followed by a smaller list.

Given the recursive definition of a list, it is natural to process a list with a recursive function. The base case of the
recursive function will be the minimum-size list allowed by the function, and larger lists will be handled in the recursive
case. As an example, the following is a recursive function to compute the length of a list:

230



Programming and Data Structures, Release 0.3

datum sublist

1 2 3 4

Base case Recursive case

datum sublist

Figure 32.2: Recursive definition of a list.

// REQUIRES: node represents a valid list
// EFFECTS: Computes the length of the list that starts at the
// given node.
int length(const Node *list) {
if (list == nullptr) { // empty list
return 0;

} else { // non-empty list
return 1 + length(list->next); // list->next is a smaller list

}
}

The length of an empty list is 0. The length of a non-empty list is one more than the length of the rest of the list; the
elements in the list consist of the initial datum and the elements in the rest of the list. We use the length() function
itself as an abstraction to compute the number of elements in the remainder of the list, taking the recursive leap of faith
that it will compute the right answer.

As another example, consider the problem of finding the maximum element in a list. Unlike for length(), the minimal
list is not an empty one, since an empty list has no elements in it. Instead, the minimum required size is a list with a
single datum, in which case the maximum element is just that lone datum, constituting our base case. For a larger list,
we can break it down recursively as follows:

1. Find the maximum element in the rest of the list. This element is at least as large as any other element in the rest
of the list.

2. Compare the first element to the max of the remainder. The larger of the two is transitively at least as large as
the elements in the rest of the list.

The following implements this algorithm:

// REQUIRES: node represents a valid, non-empty list
// EFFECTS: Returns the maximum element in the list that starts at
// the given node.
int list_max(const Node *list) {
if (list->next == nullptr) { // list has only one element
return list->datum;

} else { // list has more than one element
return std::max(list->datum, // compare first datum to

(continues on next page)

32.1. Recursive Lists 231



Programming and Data Structures, Release 0.3

(continued from previous page)

list_max(list->next)); // max of rest of list
}

}

The base case is a list with one element. Such a list has an empty next list, so we check for that and return the list’s
lone datum. The recursive case computes the max of the rest of the list and then uses std::max() to determine the
maximum of that item and the first item in the list. As always, we take the recursive leap of faith, assuming that the
recursive call to list_max() computes the right answer for the smaller list.

Exercise 2 Write a function list_sum() that recursively computes the sum of the elements in a list.

// EFFECTS: Computes the sum of the elements in the list that
// starts at the given node.
int list_sum(const Node *node) {
// your code here

}

Exercise 3 Write a function last() that recursively finds and returns the last element of a non-empty list.

// REQUIRES: node represents a valid, non-empty list
// EFFECTS: Returns the last element in the list that starts at
// the given node.
int last(const Node *node) {
// your code here

}

32.2 Trees

A list is a linear-recursive data structure: each non-empty list is subdivided into a datum and a single smaller list. A
tree is a data structure that is, naturally, tree recursive. A non-empty tree is subdivided into a datum and several smaller
trees. In this course, we only consider binary trees, where non-empty trees are subdivided into exactly two smaller
trees.

The term tree stems1 from the fact that its branching structure resembles that of a botanical tree. Terminology with
respect to tree data structures borrows from both botanical and family trees.

• The root is the node that originates the branching structure. In our diagrams, the root is pictured at the top of the
tree.

• A non-empty tree consists of a parent node and two child nodes. For a binary tree, there is a left child and a right
child. Nodes that have the same parent are siblings.

• A node whose children are all empty is a leaf.

• The size of a tree is the number of elements it contains.

• The height of a tree is the number of levels at which it has elements. Equivalently, it is the length of the longest
path from the root to a leaf node.

Algorithms on trees are often written as tree-recursive functions, so that the recursive case makes more than one
recursive call. The general strategy is to directly compute the result for the smallest tree allowed by the function,
constituting the base case. The recursive case makes recursive calls to compute the results for the left and right children,
then combines those results with the datum at the root to compute the answer for the whole tree.

1 Pun intended.

32.2. Trees 232



Programming and Data Structures, Release 0.3

left
subtree

right
subtree

datum

Base case Recursive case

3

5 9

8 7

4

6

left
subtree

right
subtree

datum

Figure 32.3: Recursive definition of a tree. A non-empty tree consists of a datum and two smaller trees.

7

6

4

2

9

1

5

height = 5

Figure 32.4: The height of a tree is the number of levels that contain elements, or equivalently, the length of the longest
path from root to a leaf.

32.2. Trees 233



Programming and Data Structures, Release 0.3

As an example, the following algorithm computes the size of a tree:

• The size of an empty tree is zero.

• The size of a non-empty tree is the size of the left child, plus the size of the right child, plus one for the root
datum.

Before we can implement this algorithm in code, we need a data representation. As with a list, we use a Node struct,
but it now has a datum and pointers to left and right Nodes:

struct Node {
int datum;
Node *left;
Node *right;

};

Like a list, we use a null pointer to represent an empty tree.

Node

5 datum

left

0x0 right5

8

42

Node

8 datum

left

right
Node

4 datum

0x0 left

0x0 right

Node

2 datum

0x0 left

0x0 right

Figure 32.5: Data representation of a tree, using a node for each element and null pointers for empty trees.

We can now implement the size() function:

// REQUIRES: node represents a valid tree
// EFFECTS: Returns the number of elements in the tree represented
// by the given node.
int size(const Node *tree) {
if (!tree) { // empty tree
return 0;

} else { // non-empty tree
return 1 + size(tree->left) + size(tree->right);

}
}

As with other recursive functions, we take the recursive leap of faith that size() computes the right answer on smaller
trees.

The height of a tree is the number of levels it contains. An empty tree contains no levels, so its height is zero. For

32.2. Trees 234



Programming and Data Structures, Release 0.3

a non-empty tree, we exploit the alternate definition of height, that it is the length of the longest path from root to
leaf. The longest such patch is just one node longer than the longest path in the child subtrees, since the root adds one
additional node to the part of the path contained in a child. Thus, we compute the height as follows:

// REQUIRES: node represents a valid tree
// EFFECTS: Returns the height of the tree represented by the given
// node.
int height(const Node *tree) {
if (!tree) { // empty tree
return 0;

} else { // non-empty tree
return 1 + std::max(height(tree->left),

height(tree->right));
}

}

We use std::max() to obtain the longer path from the two child trees, then add one to the result to account for the
root node.

Exercise 4 Write a function tree_contains() that determines whether the given value is contained in the given
tree.

// EFFECTS: Returns whether the tree rooted at the given node
// contains the given value.
bool tree_contains(const Node *node, int value) {
// your code here

}

Exercise 5 Write a function count_leaves() that counts the number of leaf nodes in the given tree.

Hint: You will likely need two base cases.

// EFFECTS: Returns the number of leaf nodes in the tree rooted
// at the given node.
int count_leaves(const Node *node) {
// your code here

}

32.2.1 Tree Traversals

The following function prints every element in a tree to standard output:

// REQUIRES: node represents a valid tree
// MODIFIES: cout
// EFFECTS: Prints each element in the given tree to standard out,
// with each element followed by a space.
void print(const Node *tree) {
if (tree) { // non-empty tree
cout << tree->datum << " ";
print(tree->left);
print(tree->right);

}
}

32.2. Trees 235



Programming and Data Structures, Release 0.3

This algorithm processes a root datum before processing any of the data in the children. It thus implements a preorder
traversal. For the tree in Figure 32.4, it prints the elements in the order 6 4 1 7 2 9 5.

Moving the print statement results in alternate orderings. The following implements an inorder traversal:

if (tree) { // non-empty tree
print(tree->left);
cout << tree->datum << " ";
print(tree->right);

}

The data in the left child is processed first, then the root datum, then the data in the right child. For the tree with height
5, it prints 1 4 6 2 5 9 7.

A postorder traversal processes the root datum after the data in the children:

if (tree) { // non-empty tree
print(tree->left);
print(tree->right);
cout << tree->datum << " ";

}

For the same tree, the postorder traversal prints 1 4 5 9 2 7 6.

The structure of a binary tree can be uniquely determined by knowing any two of these orderings.

32.2. Trees 236



CHAPTER

THIRTYTHREE

BINARY SEARCH TREES (BSTS)

Last time, we saw binary trees, which are a recursive data structure that is either empty, or consists of an element and
two subtrees. A binary search tree (BST) is a binary tree whose elements are stored in an order that maintains a sorting
invariant. Specifically, a binary search tree is either:

• empty, or

• a root datum with two subtrees such that:

1. The two subtrees are themselves binary search trees.

2. Every element in the left subtree is strictly less than the root datum.

3. Every element in the right subtree is strictly greater than the root datum.1

Figure 33.1 shows an example of a binary search tree.

6

5 9

1 7

2

10

< x
subtree

x

> x
subtree

Figure 33.1: A binary search tree.

Every element in the left subtree is less that the root datum, and every element in the right subtree is greater than the
root. The left and right subtrees meet the requirements for a binary search tree. Thus, the whole tree is a binary search
tree.

1 Our binary search trees do not permit duplicate elements, since we will be using them to build set and map abstractions. If a BST does permit
duplicates, it will use a modified definition that allows items equal to the root in one of the subtrees.

237



Programming and Data Structures, Release 0.3

Figure 33.2 depicts trees that do not meet the definition of a binary search tree.

5

3

72

5

3

12

Figure 33.2: Trees that violate the invariants for a binary search tree.

In the tree on the left, the left subtree contains the element 7, which is not smaller than the root element 5. This violates
the second condition in the recursive definition above of a BST. In the tree on the right, the right subtree is empty, which
is a valid binary search tree. However, the left subtree is not a valid BST, since it does not meet the sorting invariant
for a BST. Thus, the tree on the right is not a binary search tree.

A binary search tree is thus named because searching for an element can be done efficiently, in time proportional to the
height of the tree rather than the size. A search algorithm need only recurse on one side of the tree at each level. For
example, in searching for the element 2 in the BST in Figure 33.1, the element must be in the left subtree, since 2 is
less than the root element 6. Within the left subtree, it must again be to the left, since 2 is less than 5. Within the next
subtree, the 2 must be to the right of the 1, leading us to the actual location of the 2.

More generally, the following algorithm determines whether or not a BST contains a particular value:

• If the tree is empty, it does not contain the value.

• Otherwise, if the root datum is equal to the value, the tree contains the element.

• If the value is less than the root element, it must be in the left subtree if it is in the tree, so we repeat the search
on the left subtree.

• Otherwise, the value is greater than the root element, so it is in the right subtree if it is in the tree at all. Thus,
we repeat the search on the right subtree.

The first two cases above are base cases, since they directly compute an answer. The latter two are recursive cases, and
we take the recursive leap of faith that the recursive calls will compute the correct result on the subtrees.

The algorithm leads to the following implementation on our tree representation:

// REQUIRES: node represents a valid binary search tree
// EFFECTS: Returns whether or not the given value is in the tree
// represented by node.
bool contains(const Node *node, int value) {
if (!node) { // empty tree
return false;

} else if (node->datum == value) { // non-empty tree, equal to root
return true;

} else if (value < node->datum) { // less than root
return contains(node->left, value);

} else { // greater than root
return contains(node->right, value);

}
}

238



Programming and Data Structures, Release 0.3

This implementation is linear recursive, since at most one recursive call is made by each invocation of contains().
Furthermore, every recursive call is a tail call, so the implementation is tail recursive. This example illustrates that the
body of a linear- or tail-recursive function may contain more than one recursive call, as long as at most one of those
calls is actually made.

Let us consider another algorithm, that of finding the maximum element of a BST, which requires there to be at least
one element in the tree. If there is only one element, then the lone, root element is the maximum. The root is also the
maximum element when the right subtree is empty; everything in the left subtree is smaller than the root, making the
root the largest item. On the other hand, when the right tree is not empty, every element in that subtree is larger than
the root and everything in the left subtree. Then the largest element in the whole tree is the same as the largest element
in the right subtree.

Summarizing this, we have the following algorithm:

• If the right subtree is empty, then the root is the maximum.

• Otherwise, the maximum item is the maximum element in the right subtree.

We implement the algorithm as follows:

// REQUIRES: node represents a valid non-empty binary search tree
// EFFECTS: Returns the maximum element in the tree represented by
// node.
int tree_max(const Node *node) {
if (!node->right) { // base case
return node->datum;

} else { // recursive case
return tree_max(node->right);

}
}

As with contains(), tree_max() is tail recursive, and it runs in time proportional to the height of the tree.

33.1 The BinarySearchTree Interface

In the full linked-list definition we saw in Linked Lists, we defined a separate IntList class to act as the interface
for the list, defining Node as a member of that class. We then generalized the element type, resulting in a List class
template. We follow the same strategy here by defining a BinarySearchTree class template as the interface for a
BST.

template <typename T>
class BinarySearchTree {
public:
// EFFECTS: Constructs an empty BST.
BinarySearchTree();

// EFFECTS: Constructs a copy of the given tree.
BinarySearchTree(const BinarySearchTree &other);

// EFFECTS: Replaces the contents of this tree with a copy of the
// given tree.
BinarySearchTree & operator=(const BinarySearchTree &other);

// EFFECTS: Destructs this tree.
(continues on next page)

33.1. The BinarySearchTree Interface 239



Programming and Data Structures, Release 0.3

(continued from previous page)

~BinarySearchTree();

// EFFECTS: Returns whether this tree is empty.
bool empty() const;

// EFFECTS: Returns the number of elements in this tree.
int size() const;

// EFFECTS: Returns whether the given item is contained in this
// tree.
bool contains(const T &value) const;

// REQUIRES: value is not in this tree
// EFFECTS: Inserts the given item into this tree.
void insert(const T &value);

private:
// Represents a single node of a tree.
struct Node {
T datum;
Node *left;
Node *right;
// INVARIANTS: left and right are either null or pointers to
// valid Nodes

};

// The root node of this tree.
Node *root;
// INVARIANTS: root is either null or a pointer to a valid Node

};

As with a list, we define Node as a nested class of BinarySearchTree to encapsulate it within the latter ADT. Since
it is an implementation detail and not part of the BST interface, we define Node as a private member.

The contains() member function differs from the one we defined before; the member function just takes in a data
item, while our previous definition operates on a node as well. We define the latter as a private helper function and call
it with the root node:

template <typename T>
class BinarySearchTree {

...
public:
bool contains(const T &value) const {
return contains_impl(root, value);

}

private:
bool contains_impl(const Node *node, const T &value) {
if (!node) {
return false;

} else if (node->datum == value) {
return true;

} else if (value < node->datum) {
(continues on next page)

33.1. The BinarySearchTree Interface 240



Programming and Data Structures, Release 0.3

(continued from previous page)

return contains_impl(node->left, value);
} else {
return contains_impl(node->right, value);

}
}

Node *root;
};

Observe that contains_impl() does not refer to a BinarySearchTree or any of its members. Thus, there is no need
for it to have a this pointer to a BinarySearchTree object. We can declare the function as a static member function
to eliminate the this pointer.

template <typename T>
class BinarySearchTree {

...
public:
bool contains(const T &value) const {
return contains_impl(root, value);

}

private:
static bool contains_impl(const Node *node, const T &value) {
if (!node) {
return false;

} else if (node->datum == value) {
return true;

} else if (value < node->datum) {
return contains_impl(node->left, value);

} else {
return contains_impl(node->right, value);

}
}

Node *root;
};

Just like a static member variable is associated with a class rather than an individual object, a static member function
is also not associated with an individual object, and it cannot refer to non-static member variables.

A public static member function can be called from outside the class using the scope-resolution operator, the same
syntax for referring to a static member variable:

BinarySearchTree<int>::contains_impl(nullptr, -1);
// compile error because contains_impl() is not public

33.1. The BinarySearchTree Interface 241



Programming and Data Structures, Release 0.3

33.2 BST-Based Set

Previously, we have seen array-based set implementations, one that used an unsorted array and another a sorted array.
We can also implement a set using a binary search tree to store the data:

template <typename T>
class BSTSet {
public:
// EFFECTS: Inserts the given value into this set, if it is not
// already in the set.
void insert(const T &value) {
if (!elts.contains(value)) {
elts.insert(value);

}
}

// EFFECTS: Returns whether value is in this set.
bool contains(const T &value) const {
return elts.contains(value);

}

// EFFECTS: Returns the size of this set.
int size() const {
return elts.size();

}

private:
BinarySearchTree<T> elts;

};

If the underlying BST is balanced, meaning that each subtree within the BST has close to the same number of elements
in its left and right child, then the height of the tree is in O(log 𝑛), where 𝑛 is the size of the tree. Thus, the contains()
and insert() operations take logarithmic time, rather than the linear time they would take on an unsorted set.

Unfortunately, our BST implementation does not guarantee that it will be balanced. In fact, inserting items in increasing
order results in a maximally unbalanced tree as in Figure 33.3, resembling a list rather than a tree structure.

There are more complicated binary-search-tree implementations that do guarantee balance, but they are beyond the
scope of this course.

33.2. BST-Based Set 242



Programming and Data Structures, Release 0.3

1

2

3

4

5
…

Figure 33.3: Inserting elements into a non-balancing binary search tree in order results in a linear structure, with height
equal to the number of elements.

33.2. BST-Based Set 243



CHAPTER

THIRTYFOUR

MAPS AND PAIRS

A map is a data structure that maps keys to values. It is thus an associative data structure, since it associates a value
with each key. As an example, we may want to associate exam scores with individual test takers:

aliceywu 100
akamil 23
taligoro 100
jjuett 73

We can store these data in a standard-library map:

std::map<std::string, int> scores;
scores["aliceywu"] = 100;
scores["akamil"] = 23;
scores["taligoro"] = 100;
scores["jjuett"] = 73;
cout << scores["akamil"] << endl; // prints 23
cout << scores["aliceywu"] << endl; // prints 100

The map class template has two required template parameters, the first for the key type and the second for the value
type. We are mapping string IDs to integer scores, so we use a map<string, int>. We can then use the subscript
operator with a key to insert a key-value pair into the map, or to look up the value associated with a key.

A key feature of the standard-library map is that it is not erroneous to look up a non-existent key. Instead, the map
inserts and returns a value-initialized datum for the key. For primitive types, value initialization produces the zero
value for the type. (This is distinct from default initialization, which produces an undefined value.)

cout << scores["gmatute"] << endl; // prints 0

A map is similar to a set in that the keys in the map are unique; each key is associated with at most one value. However,
the values themselves are not unique. The map above has two keys that are associated with the value 100.

Given the similarity with a set, we can also implement a map using a binary search tree. However, rather than using the
key-value pair for ordering and uniqueness, we need to use just the key, and the value merely tags along for the ride, as
shown in Figure 34.1.

To make this work, we need a heterogeneous data type for the datum member of a node, so that it can store separate key
and value items. We can define our own struct or class, or we can use the pair template in the standard <utility>
library.

std::pair<int, bool> p1; // default constructor value initializes both items
p1.first -= 5; // first now has value -5

(continues on next page)

244



Programming and Data Structures, Release 0.3

Node

"aliceywu" 100 datum

left

right

Node

"akamil" 23 datum

0x0 left

0x0 right

Node

"taligoro" 100 datum

left

0x0 right

Node

"jjuett" 73 datum

0x0 left

0x0 right

Figure 34.1: A map represented as a binary search tree.

(continued from previous page)

p1.second = false;

std::pair<string, int> p2 = { "hello", 4 }; // explicit initialization
cout << p2.first << ": " << p2.second << endl; // prints hello: 4

A pair stores a first and second item, which can be of different types. The pair template is parameterized by the types
of these items.

We can use a pair and a BST to implement a map:

template <typename Key_type, typename Value_type>
class Map {
public:
// EFFECTS: Returns whether this map is empty.
bool empty() const;

// EFFECTS: Returns the number of key-value pairs in this map.
size_t size() const;

// EFFECTS: Returns the value associated with the given key. If
// the key is not in the map, inserts the key,
// associating it with a value-initialized object of type
// Value_type, and returns the newly inserted value.
Value_type& operator[](const Key_type& key);

(continues on next page)

245



Programming and Data Structures, Release 0.3

(continued from previous page)

private:
// Type alias for a key-value pair.
using Pair_type = std::pair<Key_type, Value_type>;

// Comparator that compares pairs by their key components.
class PairLess {
public:
bool operator()(...) const;

};

// Data representation.
BinarySearchTree<Pair_type, PairLess> entries;

};

For this to work, we need a BinarySearchTree that can take a custom comparator, to compare key-value pairs by just
the value component. This comparator can be defaulted to std::less, which compares elements according to the <
operator:

template <typename T, typename Compare=std::less<T>>
class BinarySearchTree {

...
};

All comparisons within the tree now must use an object of the Compare type. We leave the details as an exercise for
the reader.

246



Part V

Odds and Ends

247



CHAPTER

THIRTYFIVE

ERROR HANDLING AND EXCEPTIONS

Thus far, we have largely ignored the problem of handling errors in a program. We have included REQUIRES clauses
in many of our functions, specifying that the behavior is undefined when the requirements are violated. However, for
functions that interact with data external to the program such as user input, files, or other forms of I/O, it is unrealistic
to assume that the data will always be available and valid. Instead, we need to specify well-defined behavior for what
happens when the requirements for such a function are violated.

In writing a complex program, we subdivide it into individual functions for each task. Each function only knows how
to handle its own job, and it returns results to its caller. As a result, it generally is not the case that the function that
detects an error is equipped to handle it. Consider the following example:

// EFFECTS: Opens the file with the given filename and returns the
// contents as a string.
string read_file_contents(const string &filename) {

ifstream fin(filename);
if (!fin.is_open()) {
??? // file did not open; now what?

}
...

}

The job of read_file_contents() is to read data from a file. It doesn’t know anything further about the program, so
it isn’t in a position to determine what should be done in case of an error. Depending on the program, the right course
of action may be to just print an error message and quit, prompt the user for a new filename, ignore the given file and
keep going, and so on. Furthermore, the read_file_contents() function may actually be used in several different
contexts, each of which requires a different form of error recovery. The only thing that read_file_contents()
should be responsible for is detecting and conveying that an error occurred, and a different function further up in the
call stack should do what is required to handle the error.

Thus, we need a mechanism that separates error detection from error handling, as well as a means for notifying a caller
that an error occurred. We will look at several different strategies for doing so.

35.1 Global Error Codes

A common strategy in the C language is to set the value of a global variable to an error code, which provides information
about the type of error that occurred. For example, many implementations of C and C++ functions use the errno global
variable to signal errors. The following is an example that calls the strtod() standard-library function to read a double
from a C-style string:

#include <cerrno>
#include <cstdlib>

(continues on next page)

248



Programming and Data Structures, Release 0.3

(continued from previous page)

#include <iostream>

using std::cout;
using std::endl;

int main(int argc, char **argv) {
char *end;
errno = 0; // reset errno before call
double number = std::strtod(argv[1], &end);
if (errno == ERANGE) { // check errno after call

cout << "range error" << endl;
} else {
cout << number << endl;

}
}

When given the representation of a number that is out of range of the double type, strtod() sets errno to ERANGE:

$ ./main.exe 1e1000
range error

The strategy of setting a global error code can be (pardon the pun) error-prone. For example, errno must be set to zero
before calling a standard-library function that uses it, and the caller must also remember to check its value after the
function call returns. Otherwise, it may get overwritten by some other error down the line, masking the original error.

35.2 Object Error States

Another strategy used by C++ code is to set an error state on an object. This avoids the negatives of a global variable,
since each object has its own error state rather than sharing the same global variable. C++ streams use this strategy:

int main(int argc, char **argv) {
std::ifstream input(argv[1]);
if (!input) {
cout << "error opening file" << endl;

}
}

As with a global variable, the user must remember to check the error state after performing an operation that may set
it.

35.3 Return Error Codes

Return error codes are another strategy used in C and C++ code to signal the occurrence of an error. In this pattern, a
value from a function’s return type is reserved to indicate that the function encountered an error. The following is an
example of a factorial() function that uses this strategy:

// EFFECTS: Computes the factorial of the given number. Returns -1
// if n is negative.
int factorial(int n) {

(continues on next page)

35.2. Object Error States 249



Programming and Data Structures, Release 0.3

(continued from previous page)

if (n < 0) {
return -1; // error

} else if (n == 0) {
return 1;

} else {
return n * factorial(n - 1);

}
}

As with a global error code or an object state, it is the responsibility of the caller to check the code to determine whether
an error occurred. Furthermore, a return error code only works if there is a value that can be reserved to indicate an
error. For a function such as atoi(), which converts a C-style string to an int, there is no such value. In fact, atoi()
returns 0 for both the string "0" and "hello", and the caller cannot tell whether or not the input was erroneous.

35.4 Exceptions

All three strategies above have the problem that the caller of a function must remember to check for an error; neither
the compiler nor the runtime detect when the caller fails to do so. Another common issue is that error checking is
interleaved with the regular control flow of the caller, as in the following:

int main(int argc, char **argv) {
double number = std::stod(argv[1]);
string input;
cin >> input;
if (!input) {
cout << "couldn't read input" << endl;

} else if (input == "sqrt") {
cout << std::sqrt(number) << endl;

} else if (input == "log") {
cout << std::log(number) << endl;

}
...

}

The control flow for the error case is mixed in with that of non-error cases, making the code less readable and harder
to maintain. Furthermore, the code above fails to check for errors in sqrt() or log(), which is not immediately clear
due to the interleaving of control flow.

What we want is a mechanism for error handling that:

• Separates error detection from error handling, providing a general means for signaling that an error occurred.

• Separates the control flow for error handling from that of non-erroneous cases.

• Detects when an error is not handled, which by default should cause the program to exit with a meaningful
message.

The mechanism provided by C++ and other modern languages is exceptions.

The following is an example of code that uses exceptions:

// Represents an exception in computing a factorial.
class FactorialError {};

(continues on next page)

35.4. Exceptions 250



Programming and Data Structures, Release 0.3

(continued from previous page)

// EFFECTS: Computes the factorial of the given number. Throws a
// FactorialError if n is negative.
int factorial(int n) {
if (n < 0) { // error case
throw FactorialError(); // throw an exception

}
if (n == 0) { // non-error case
return 1;

} else {
return n * factorial(n - 1);

}
}

int main(int argc, char **argv) {
try {
int n = std::stoi(argv[1]);
int result = factorial(n);
cout << n << "! = " << result << endl;

} catch (const std::invalid_argument &error) {
cout << "Error converting " << argv[1] << " to an int: "

<< error.what() << endl;
} catch (const FactorialError &error) {
cout << "Error: cannot compute factorial on negative number"

<< endl;
}

}

The individual components of the exception mechanism used above are:

• The FactorialError class is an exception type, and objects of that type are used to signal an error.

• When the factorial() function detects an error, it throws an exception object using the throw keyword. In
the example above, the function throws a default-constructed FactorialError. The standard-library stoi()
function throws a std::invalid_argument object when given a string that does not represent an integer.

• The compiler arranges for the exception to propagate outward until it is handled by a try/catch block. In the
example above, the first catch block is executed when a std::invalid_argument is thrown, while the second
is run when a FactorialError is thrown.

When an exception is thrown, execution pauses and can only resume at a catch block. The code that is between
the throw and the catch that handles the exception is entirely skipped. This is a good thing; if the rest of the code in
factorial() were to run, the function would try to compute the factorial of a negative number, which would recurse
indefinitely (or at least until either the program runs out of stack space, or n reaches the most negative int, at which
point the subtraction n - 1 would produce undefined behavior).

The result of running this program on different inputs is as follows:

$ ./main.exe 3
3! = 6
$ ./main.exe -1
Error: cannot compute factorial on negative number
$ ./main.exe hello
Error converting hello to an int: stoi: no conversion

The error message in the last example, specifically the part returned by error.what(), is implementation-dependent.

35.4. Exceptions 251



Programming and Data Structures, Release 0.3

35.4.1 Exception Objects

C++ allows an object of any type to be thrown as an exception. However, a proper exception carries information about
what caused the error, and using exceptions of different types allows a program to distinguish between different kinds
of errors. More specifically, the example above illustrates that a program can perform different actions in response to
each exception type.

There are several exceptions defined by the standard library, such as invalid_argument or out_of_range. The
standard-library exceptions all derive from std::exception, and it is common for user-defined exceptions to do so
as well:

class EmailError : public std::exception {
public:

EmailError(const string &msg_in) : msg(msg_in) {}

const char * what() const override {
return msg.c_str();

}

private:
string msg;

};

A user-defined exception is a class type, so it can carry any information necessary to pass between the function that
detects an error and the one that handles it. For EmailError above, the constructor takes a string and stores it as a
member variable, allowing any message to be specified when creating an EmailError object:

throw EmailError("Error sending email to: " + address);

The what() member function is a virtual function defined by std::exception, and EmailError overrides it to
return the message passed to the constructor. We can call it when catching an exception to obtain the message:

try {
...

} catch (const EmailError &error) {
cout << error.what() << endl;

}

Exception types are often defined in an inheritance hierarchy, with a derived class representing a more specific kind of
error. Deriving from std::exception is an example of this, but we can also define exception types that derive from
EmailError:

class InvalidAddressError : public EmailError {
...

};

class SendFailedError : public EmailError {
...

};

We will shortly see how exception hierarchies interact with try/catch blocks.

35.4. Exceptions 252

https://en.cppreference.com/w/cpp/error/exception


Programming and Data Structures, Release 0.3

35.4.2 Try/Catch Blocks

A try/catch block consists of a try block followed by one or more catch blocks:

try {
int n = std::stoi(argv[1]);
int result = factorial(n);
cout << n << "! = " << result << endl;

} catch (const std::invalid_argument &error) {
cout << "Error converting " << argv[1] << " to an int: "

<< error.what() << endl;
} catch (const FactorialError &error) {
cout << "Error: cannot compute factorial on negative number"

<< endl;
}

The try/catch can only handle exceptions that occur within the try part of the block, including in functions called by
code in the try. When a thrown exception propagates to a try block, the compiler checks the corresponding catch blocks
in order to see if any of them can handle an exception of the type thrown. Execution is immediately transferred to the
first applicable catch block:

• The catch parameter is initialized from the exception object. Declaring the parameter as a reference to const
avoids making a copy.

• The body of the catch block is run.

• Assuming the catch block completes normally, execution proceeds past the entire try/catch. The remaining code
in the try or in the other catch blocks is skipped.

In matching an exception object to a catch block, C++ takes into account subtype polymorphism – if the dynamic type
of the object is derived from the type of a catch parameter, the catch is able handle that object, so the program uses that
catch block for the exception. The following is an example:

void grade_submissions() {
vector<string> students = load_roster();
for (const string &name : students) {
try {
auto sub = load_submission(name);
double result = grade(sub);
email_student(name, result);

} catch (const FileError &error) {
cout << "Can't grade: " << name << endl;

} catch (const EmailError &error) {
cout << "Error emailing: " << name << endl;

}
}

}

The first catch block above handles objects of any type derived from FileError, while the second handles objects of
any type derived from EmailError.

C++ also has a “catch-all” that can handle any exception type:

try {
// some code here

} catch (...) {
(continues on next page)

35.4. Exceptions 253



Programming and Data Structures, Release 0.3

(continued from previous page)

cout << "Caught an unknown error" << endl;
}

The ... as a catch parameter enables the catch block to handle any type of object. However, this should in general be
avoided – instead, a particular try/catch should only catch the specific kinds of errors that it is able to recover from. For
instance, consider the following implementation of the load_roster() function:

vector<string> load_roster() {
try {
csvstream csvin("280roster.csv"); // may throw an exception
// Use the stream to load the roster...

} catch (const csvstream_exception &e) {
cout << e.what() << endl;
// return ???

}
}

The code uses the csvstream library to read a spreadsheet in CSV format. The library may throw a
csvstream_exception object when opening the file, such as if the file doesn’t exist. However, the load_roster()
function is not the best place to handle this exception; as discussed previously, the appropriate error recovery depends on
the application, and it is the caller of load_roster() that knows what to do in case of an error. Thus, load_roster()
should avoid catching the exception, letting it propagate to its caller.

35.4.3 Exception Propagation

When an exception is thrown, if the current function is not within a try block, the exception propagates to the function’s
caller. Similarly, if the current function is within a try block but there is no associated catch block that can handle an
object of the exception’s type, the exception also propagates to the caller.

To handle an exception, the program immediately pauses execution, then looks for an exception handler as follows. The
process starts at the statement that throws the exception:

• Determine if the current statement is within the try part of a try/catch block in the current function. If not, the
function call is terminated, and the process repeats in the caller.

• If the execution is within a try, examine the catch blocks in order to find the first one that can handle an exception
of the given type. If no matching catch is found, the function call is terminated, and the process repeats in the
caller.

• If a matching catch block is found, the catch parameter is initialized with the exception object, and the body of
the catch immediately runs. Assuming it completes successfully, execution proceeds past the entire try/catch.

As described above, if the code is not within a try block that can handle the exception object, execution returns imme-
diately to the caller, and the program looks for a handler there. The exception propagates outward until a viable handler
is found.

If the exception proceeds outward past main(), the default behavior is to terminate the program. This ensures that
either the exception is handled, or the program crashes, informing the user that an error occurred.

35.4. Exceptions 254

https://github.com/awdeorio/csvstream


Programming and Data Structures, Release 0.3

35.4.4 Exception Examples

The following is a DriveThru class that keeps track of menu items and their prices:

class InvalidOrderException : public std::exception {};

class DriveThru {
public:
// EFFECTS: Adds the given item to the menu.
void add_item(const string &item, double price) {
menu[item] = price;

}

// EFFECTS: Returns the price for the given item. If the item
// doesn't exist, throws an InvalidOrderException.
double get_price(const string &item) const {
auto it = menu.find(item);
if (it != menu.end()) {
return it->second;

}
throw InvalidOrderException();

}

private:
// A map from item names to corresponding prices
map<string, double> menu;

};

The get_price() member function looks up the price of an item, returning it if it is on the menu. If not, it throws
an exception of type InvalidOrderException. We use the find() member function of map to avoid inserting a
value-initialized price into the map when an item does not exist.

The following is a program that reads order items from standard input, computing the total price:

int main() {
DriveThru eats280;
... // add items to eats280

double total = 0;
string item;
while (cin >> item && item != "done") {
try {
total += eats280.get_price(item);

} catch (const InvalidOrderException &e) {
cout << "Sorry, we don't have: " << item << endl;

}
}
cout << "Your total cost is: " << total << endl;

}

The program ignores items that aren’t on the menu, printing a message indicating that it is not available. In such a case,
get_price() throws an InvalidOrderException. Since the throw statement is not within a try in get_price(),
the exception propagates outward to main(). The call to get_price() is within a try, and there is an associated catch
that matches the type of the exception. Execution proceeds to that catch, which prints an error message. Then execution
continues after the full try/catch, ending an iteration of the loop and reading in a new item to start the next iteration

35.4. Exceptions 255



Programming and Data Structures, Release 0.3

As another example, we write a subset of a program that loads and grades student submissions for an assignment. We
use the following classes:

// An exception signifying an error when reading a file.
class FileError : std::exception {

...
};

// An exception signifying an error when sending an email.
class EmailError : std::exception {

...
};

// A student submission.
class Submission {

...
public:
// EFFECTS: Grades this submission and returns the result.
double grade();

};

FileError and EmailError are exceptions that the program will use. We saw the definition of EmailError previ-
ously, and FileError is similarly defined. A Submission object represents a student submission, and we elide the
definition here.

The following functions perform individual tasks in the grading program:

// EFFECTS: Emails the given student the given grade. Throws
// EmailError if sending the email fails.
void email_student(const string &name, double grade);

// EFFECTS: Loads the roster from 280roster.csv. Throws
// csvstream_exception if the file cannot be read.
vector<string> load_roster() {
csvstream csvin("280roster.csv"); // may throw an exception

vector<string> roster;
// Use the stream to load the roster...

return roster;
}

// EFFECTS: Loads the submission for the given student. Throws
// FileError if the submission cannot be loaded.
Submission load_submission(const string &name) {
std::ifstream input(name);

if (!input) {
throw FileError();

}

return Submission(input);
}

All three functions throw exceptions when they are unable to perform their task. The email_student() func-

35.4. Exceptions 256



Programming and Data Structures, Release 0.3

tion throws an EmailError if sending fails. The load_roster() function throws a csvstream_exception if
reading the roster file fails; in actuality, the exception will be thrown by the csvstream constructor, but since
load_roster() allows the exception to propagate outward, it documents that such an exception may be thrown. Fi-
nally, load_submissions() throws a FileError if a submission file fails to open.

The function that directs the grading process is as follows:

// EFFECTS: Loads and grades all submissions, sending email to each
// student with their result. Throws csvstream_exception
// if the roster cannot be loaded.
void grade_submissions() {
vector<string> students = load_roster();
for (const string &name : students) {
try {
auto sub = load_submission(name);
double result = sub.grade();
email_student(name, result);

} catch (const FileError &e) {
cout << "Can't grade: " << s << endl;

} catch (const EmailError &e) {
cout << e.what() << endl;

}
}

}

This function handles FileError and EmailError exceptions by just printing a message to standard out. The
try/catch is within the for loop so that failure for one student does not prevent grading of other students. If a
csvstream_exception is thrown by load_roster(), it gets propagated to the caller of grade_submissions().

Lastly, we have the main() function:

int main() {
try {
grade_submissions();
cout << "Grading done!" << endl;

} catch (const csvstream_exception &e) {
cout << "Grading failed! << endl;
cout << e.what() << endl;
return EXIT_FAILURE;

}
}

This function handles a csvstream_exception by printing a message to standard out and then returning with a
nonzero exit code, indicating a failure.

We consider a few more small examples to better understand how exceptions are propagated and handled. The examples
use the following exception types:

class GoodbyeError {};

class HelloError {};

class Error {
public:
Error(const string &s) : msg(s) {}

(continues on next page)

35.4. Exceptions 257



Programming and Data Structures, Release 0.3

(continued from previous page)

const string & get_msg() {
return msg;

}

private:
string msg;

};

Objects of GoodbyeError will generally be thrown by a goodbye() function, while HelloError objects will be
thrown by hello().

The first example is as follows:

void goodbye() {
cout << "goodbye called" << endl;
throw GoodbyeError();
cout << "goodbye returns" << endl;

}

void hello() {
cout << "hello called" << endl;
goodbye();
cout << "hello returns" << endl;

}

int main() {
try {
hello();
cout << "done" << endl;

} catch (const HelloError &he) {
cout << "caught hello" << endl;

} catch (const GoodbyeError &ge) {
cout << "caught goodbye" << endl;

}
cout << "main returns" << endl;

}

In this example, hello() is called from within a try in main(). So if an exception is thrown and propagates to main(),
the associated catch blocks will attempt to handle the exception. Within hello(), the message hello called is
printed, followed by a call to goodbye(). The latter prints out goodbye called and then throws a GoodbyeError
object. Execution immediately pauses, and the program checks if it is within a try in goodbye(). It is not, so it then
checks the caller to see if it is currently in a try there. There isn’t one in hello(), so the program then checks for a try
in main(). The execution state is indeed within a try in main(), so the program checks the catch blocks, in order, to
see if there is one that can handle a GoodbyeError. The second catch can do so, and its code is run, printing caught
goodbye. Execution then proceeds past the try/catch, so the print of main returns executes.

Observe that the remaining code in goodbye(), hello(), and the try block in main() were skipped when handling
the exception. The full output is as follows:

hello called
goodbye called
caught goodbye
main returns

35.4. Exceptions 258



Programming and Data Structures, Release 0.3

Consider another example:

void goodbye() {
cout << "goodbye called" << endl;
throw GoodbyeError();
cout << "goodbye returns" << endl;

}

void hello() {
cout << "hello called" << endl;
try {
goodbye();

} catch (const GoodbyeError &ge) {
throw HelloError();

} catch (const HelloError &he) {
cout << "caught hello" << endl;

}
cout << "hello returns" << endl;

}

int main() {
try {
hello();
cout << "done" << endl;

} catch (const HelloError &he) {
cout << "caught hello" << endl;

} catch (const GoodbyeError &ge) {
cout << "caught goodbye" << endl;

}
cout << "main returns" << endl;

}

This is the same as the first example, except now the call to goodbye() is within a try in hello(). When the
GoodbyeError object is thrown, the program determines that it is not within a try in goodbye(), so it checks whether
it is in a try in hello(). It is, so the program checks whether there is a catch block that can handle a GoodbyeError.
The first catch block can do so, so its code is run. This throws a HelloError, so the program checks whether execution
is within a try in hello(). It is not – execution is within a catch block, not within a try. So the program proceeds to
the caller, checking whether execution is in a try in main(). The call to hello() is indeed within a try, so the program
examines the catch blocks. The first one handles a HelloError, so its body is executed, printing caught hello.
Then execution proceeds past the try/catch to the print of main returns.

Observe that a try/catch can only handle exceptions that are thrown within the try block; it does not deal with exceptions
that are thrown from one of its catch blocks, so an outer try/catch must handle such exceptions instead.

hello called
goodbye called
caught hello
main returns

The following example uses the Error class defined above, which has a constructor that takes a string:

void goodbye() {
cout << "goodbye called" << endl;
throw Error("bye");

(continues on next page)

35.4. Exceptions 259



Programming and Data Structures, Release 0.3

(continued from previous page)

cout << "goodbye returns" << endl;
}

void hello() {
cout << "hello called" << endl;
try {
goodbye();

} catch (const Error &e) {
throw Error("hey");

}
cout << "hello returns" << endl;

}

int main() {
try {
hello();
cout << "done" << endl;

} catch (const Error &e) {
cout << e.get_msg() << endl;

} catch (...) {
cout << "unknown error" << endl;

}
cout << "main returns" << endl;

}

The throw statement in goodbye() throws an Error object constructed with the string "bye". There is no try in
goodbye(), so the program checks whether it is currently within a try in hello(). Execution is indeed within the try
there, and the catch block can handle the Error object. The catch block throws a different Error object, initialized
with the string "hey". As with the previous example, this throw statement is not within a try in hello(), so the
program checks for a try in main(). Both catch blocks can handle the Error object; the second is a catch-all that can
handle any exception. However, the program considers the catch blocks in order, so it is the first one that runs. Its body
retrieves the message from the Error object, printing out hey. Then execution proceeds past the try/catch. The full
output is below:

hello called
goodbye called
hey
main returns

One more example is the following:

void goodbye() {
cout << "goodbye called" << endl;
throw GoodbyeError();
cout << "goodbye returns" << endl;

}

void hello() {
cout << "hello called" << endl;
try {
goodbye();

} catch (const Error &e) {
(continues on next page)

35.4. Exceptions 260



Programming and Data Structures, Release 0.3

(continued from previous page)

throw Error("hey");
}
cout << "hello returns" << endl;

}

int main() {
try {
hello();
cout << "done" << endl;

} catch (const Error &e) {
cout << e.get_msg();
cout << endl;

} catch (...) {
cout << "unknown error" << endl;

}
cout << "main returns" << endl;

}

Here, the goodbye() function throws a GoodbyeError, and the throw is not within a try in goodbye(), so the program
looks for a try in hello(). Execution is within a try there, so the program examines the catch blocks to see whether
one can handle a GoodbyeError. The lone catch block cannot, so the program propagates the exception to the caller
and looks for a try in main(). The code is within a try in main(), so the program examines the catch blocks in order.
The first cannot handle a GoodbyeError, but the second can, so the latter runs and prints unknown error. Execution
continues after the try/catch, printing main returns. The full result is the following:

hello called
goodbye called
unknown error
main returns

35.5 Error Handling vs. Undefined Behavior

The error-detection mechanisms we discussed provide well-defined behavior in case of an error. As such, a function
that uses one of these mechanisms should document it, describing when and what kind of error can be generated:

// EFFECTS: Computes the factorial of the given number. Returns 0 if
// n is negative.
int factorial(int n);

// EFFECTS: Emails the given student the given grade. Throws
// EmailError if sending the email fails.
void email_student(const string &name, double grade);

These functions do not have REQUIRES clauses that restrict the input; violating a REQUIRES clause results in unde-
fined behavior, whereas these function produce well-defined behavior for erroneous input.

On the other hand, when code does produce undefined behavior, it cannot be detected through any of the error-handling
mechanisms above. For example, dereferencing a null or uninitialized pointer does not necessarily throw an exception,
set a global error code, or provide any other form of error detection. It is the programmer’s responsibility to avoid
undefined behavior, and there are no constraints on what a C++ implementation can do if a program results in undefined
behavior.

35.5. Error Handling vs. Undefined Behavior 261



Part VI

Supplemental Material

262



CHAPTER

THIRTYSIX

INTRODUCTION TO C++

This courses uses C++ as the language in which we explore fundamental concepts in programming. Here, we provide
a basic overview of C++ for students who are familiar with other languages such as Python or Java.

36.1 A Simple Program

Let’s start with a simple program that prints Hello world! to the screen:

#include <iostream>

int main() {
std::cout << "Hello world!" << std::endl;
return 0;

}

The entry point of a C++ program is the main() function, which is a top-level (global) function that has a signature of
the form int main() or int main(int argc, char *argv[]). A function signature consists of a return type, the
name of the function, and a list of parameters. The parameters are what the function takes as input, and the return type
is the kind of value that the function returns. For main(), it can either have no parameters, or it can have parameters
that allow it to take command-line arguments, which are specified when the program is run. For simplicity, we start
with a main() that does not have parameters.

Following the signature of the function, we have the function body, which is the code that gets executed when the
function is called. The body itself is comprised of statements, which are executed in order from top to bottom. In
our program above, the body of main() has two statements: one that prints to the screen, and a second that exits the
function with a return value of 0.

Examining the first statement more closely, we see that it is composed of expressions and operators. An expression
is a fragment of code that evaluates to some value. The simplest expressions are literals, which hardcode a specific
value in the program. For instance, "Hello world!" is a string literal that denotes the sequence of characters H,
e, and so on. A name is also an expression, and what it evaluates to depends on what the name is bound to in the
environment in which the name is evaluated. In the program above, std::cout is bound to an object representing the
standard output stream (stdout), which allows printing to the console (also referred to as shell or terminal) in which
the program is run. Similarly, std::endl is bound to an object that causes a newline to be printed when inserted to
an output stream. Finally, these expressions are connected via the binary << operator; in this context, we refer to this
as the stream-insertion operator. The code is inserting the string "Hello world!" into the standard output stream,
followed by inserting std::endl to obtain a newline.

Both std::cout and std::endl are defined in the iostream library header. The first line of the program (#include
<iostream>) instructs the C++ compiler to include the contents of the iostream library header, which makes
std::cout and std::endl available for us to use.

263



Programming and Data Structures, Release 0.3

A name such as std::cout is called a qualified name – it consists of the std qualifier, followed by the :: scope-
resolution operator, followed by the cout name. The std qualifier refers to the std namespace, which is a scope in
which most standard-library entities are defined. Thus, the qualified name std::cout refers to the cout that is defined
within the std namespace, as opposed to some other cout that might be defined in a different scope. Often, we place
a directive in our program to be able to use an entity such as cout without qualifying it with std::. The following
does so for both cout and endl:

using std::cout; // we can now use cout without qualification
using std::endl; // we can now use endl without qualification

The following does so for every entity defined in the std namespace:

using namespace std; // we can now use anything in std without qualification

Use this with caution, however – there are lots of names defined in the std namespace, so this makes it much more
likely for our names to conflict with those from the standard library. (In particular, a using namespace directive
should never be used in a header file.)

The last statement in our program is return 0;. This returns the value 0 from the main() function, which conven-
tionally indicates that the program completed successfully. We would use a nonzero value instead to indicate an error
if something went wrong.

In the specific case of returning from main(), a return statement is actually optional. (This is not the case for returning
from other functions, unless they have a void return type.) If we don’t have a return statement in main(), the compiler
implicitly adds a return 0; for us. Thus, the program above could be written equivalently as:

#include <iostream>

using std::cout; // we can now use cout without qualification
using std::endl; // we can now use endl without qualification

int main() {
cout << "Hello world!" << endl;

} // implicit return 0; added by the compiler

Now that we have examined all the pieces of our simple program, let’s compile and run it in a shell. Assuming the code
is in the file hello.cpp, we can compile and run it as follows:

$ g++ -std=c++17 -o hello.exe hello.cpp
$ ./hello.exe
Hello world!

Here, we use the $ symbol to denote the shell prompt, which is displayed by the shell to indicate that it is waiting for
our commands. (On most machines, the prompt is more complicated, but we simplify it to just a dollar sign.) We then
type the compilation command g++ -std=c++17 -o hello.exe hello.cpp, which invokes the g++ compiler. The
-std=c++17 tells the compiler to use the C++17 version of the language. The -o hello.exe tells the compiler to
use hello.exe as the name of the resulting executable file. Finally, hello.cpp is the filename of our C++ program.
When the compiler has finished, we type ./hello.exe to run the resulting executable, and we see the message Hello
world! printed to the screen.

In this course, we encourage using both the shell as well as an integrated development environment (IDE). Refer to this
tutorial for how to set up and become familiar with using a shell and IDE on your machine.

36.1. A Simple Program 264

https://eecs280staff.github.io/p1-stats/setup.html
https://eecs280staff.github.io/p1-stats/setup.html


Programming and Data Structures, Release 0.3

36.2 Static Typing

We saw above that the signature of the main() function includes the return type, which is int in the case of main().
The reason the return type is included is that C++ is a statically typed language, meaning that every value’s type must
be known at compile time. To do so, the compiler generally requires us to specify the type of a variable, as well as the
parameter types and return type of a function. For instance, the following introduces a local variable x with type int
and initial value 3:

int x = 3;

The syntax for defining a variable begins with the type of the variable, followed by the name, followed by an optional
initialization. (If no initialization is provided, the variable undergoes default initialization. For primitive types such as
int, that means the initial value of the variable is undefined.) The int type is a primitive type, which is a category
consisting of the simplest types provided by a language. Common primitive types in C++ include:

• int: signed (positive, negative, or zero) integer values in some finite range, typically [−231, 231 − 1] =
[−2147483648, 2147483647] on most machines

• std::size_t: unsigned (positive or zero only) integer values in some finite range, typically [0, 264 − 1]

• double: double-precision floating-point values, typically using a 64-bit representation

• bool: a boolean value, either true or false

• char: a character value, generally representing at least the 128 values in the ASCII standard

• void: used as the return type of a function to indicate that it does not return a value

As another example, let’s define a square() function that computes the square of a number. We’ll write it to take a
double value as input and return a double value as the result:

double square(double x) {
double result = x * x;
return result;

}

As with main(), the signature for square() starts with the return type, which is double. Then we have the name of
the function, followed by the parameter list. We take in a single double value as input, so we have a single parameter,
which we are calling x. In the body of the function, we define a new variable result that is initialized with the value
of x * x, and we then return the value of the variable.

Since we only use the variable once, we can simplify our function by eliminating it and using the expression x * x
directly where we need it:

double square(double x) {
return x * x;

}

Since an expression evaluates to a value, it has a type corresponding to that value. In the case of x * x, its type is
double since it is the product of two double values. Thus, the return statement returns a double value, matching the
declared return type of the function.

We can now invoke square() as follows:

#include <iostream>

double square(double x) {
return x * x;

(continues on next page)

36.2. Static Typing 265

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/ASCII


Programming and Data Structures, Release 0.3

(continued from previous page)

}

int main() {
std::cout << square(3.14) << std::endl;
double x = square(4);
std::cout << square(x) << std::endl;

}

The square() function must be declared above where we use it in main() – in C++, the scope of a global function or
variable is from the point of its declaration until the end of the file. (The scope of an entity is the region of code where
it may be used.) We can then invoke the function in main().

Observe that in the definition

double x = square(4);

we invoke square() on the literal 4, which actually has type int rather than the declared double type of the parameter
of the square() function. In most cases, C++ automatically converts between int and double, so that we can use
a value of one of these types where the other is expected. On the other hand, a call such as square(std::cout) as
erroneous, since there is no conversion between the type of std::cout (which happens to be std::ostream) and the
required double type.

36.3 Compound Data

In addition to primitive types, C++ has data types that represent more complex objects. For instance, the std::ostream
type (defined in the iostream header) represents an output stream, and it is the type of std::cout. The std::string
type is another common data type that represents string objects, and it is defined in the string header:

#include <iostream>
#include <string>

int main() {
std::string s = "Hello world!";
std::cout << s << std::endl;

}

Often, we want to keep track of a collection of objects of the same type, such as an arbitrary number of integer values.
We can use a std::vector to do so, which is an example of a template that is parameterized by some other type. For
instance, std::vector<int> is a collection of int values, while std::vector<std::string> is a collection of
std::string values. The following demonstrates how to use a vector:

#include <iostream>
#include <vector>

int main() {
std::vector<int> scores = { 84, 91, 77, 95, 83 };
for (std::size_t i = 0; i < scores.size(); ++i) {
std::cout << "Score " << i << " = " << scores[i] << std::endl;

}
}

36.3. Compound Data 266



Programming and Data Structures, Release 0.3

In this code, we define a scores variable of type std::vector<int>, and we provide an initial set of values as a
comma-separated list enclosed by curly braces. We then iterate over the indices of the vector, which start at 0 and end
at one less than the size of the vector, which we obtain via the expression scores.size(). We access an element
of the vector using square brackets, with the vector object on the left-hand side and the index between the brackets
(scores[i]). Using this syntax, we have to be careful not to go past the end of the vector, which would result in
undefined behavior, meaning that anything could happen – e.g. crashing the program, overwriting some other piece
of data, stealing your files, or even nothing at all. Alternatively, we can do scores.at(i), which checks whether the
index is in range and guarantees an error if it is not – the program crashes, but we get some useful information, and it
definitely won’t steal our files.

We can also add elements to a vector after it has been created:

scores.push_back(42);

This appends the element 42 at the end of the vector. Similarly, the expression scores.pop_back() removes the
element at the end of the scores vector (assuming there is at least one element in the vector; otherwise we get the
dreaded undefined behavior).

Vectors are useful for ordered collections of data that all have the same type. However, sometimes we want to keep
track of multiple pieces of data that have individual meanings, and that might even have different types. For instance, a
complex number has a real part and an imaginary part; while both might be represented as doubles, we want to keep
track of which part is which through a name rather than maintaining an ordering between them. A struct1 gives us this
ability to introduce a compound object, comprised of multiple pieces each with individual names. The following is an
example of defining a new Complex type:

struct Complex {
double real;
double imaginary;

};

We start with the struct keyword, followed by the name of the type we are defining, followed by an open curly brace.
We then specify the components of the struct, using syntax similar to variable declarations. These components are
called member variables in C++2. The struct definition is terminated by a closing curly brace and a semicolon. Once
we have this definition, we can write a function to print out a Complex value:

void Complex_print(Complex number) {
std::cout << number.real;
if (number.imaginary >= 0) {
std::cout << '+';

}
std::cout << number.imaginary << std::endl;

}

As shown above, we can access a member variable using the dot operator. The expression number.real accesses the
real component of the number object, and number.imaginary refers to the imaginary component. The function
prints the + character to separate the two components if the imaginary part is nonnegative – otherwise, the imaginary
part would have a minus sign, so we wouldn’t want a + between the two components.

We can create objects of Complex type and print them as follows:

Complex c1 = { 3.14, -1.7 };
Complex c2;
c2.real = 2.72;

(continues on next page)

1 In other languages the term class is used instead. In C++, the struct and class keywords are closely related, and we will see the details later.
2 Other languages uses the terms fields or attributes to refer to these components.

36.3. Compound Data 267



Programming and Data Structures, Release 0.3

(continued from previous page)

c2.imaginary = -4;
Complex_print(c1);
Complex_print(c2);

As the code demonstrates, we can use curly braces to initialize a Complex variable, which initializes the components
in order: c1.real gets initialized to 3.14, and c1.imaginary gets initialized to -1.7. Alternatively, we can rely on
default initialization as is the case for c2. However, this ends up initializing the two components to undefined values,
so we need to replace their values before we can proceed to use them.

As another example, we define a struct to keep track of a person’s exam score. We need to keep track of the person’s
name, as well as the score value itself:

struct Grade {
std::string name;
int score;

};

We can now use the Grade type as follows:

Grade g1 = { "Sofia", 99 };
Grade g2;
g2.name = "Amir";
g2.score = 23;
std::cout << g1.name << " earned a " << g1.score << std::endl;
std::cout << g2.name << " earned a " << g2.score << std::endl;

36.4 Value Semantics

One of the distinguishing features of a programming language is the relationship between variables and objects, which
are pieces of data in memory. In some languages, a variable is directly associated with an object, so that using the
variable always accesses the same object (as long as the variable is in scope). We say that the language has value
semantics if this is the case. In other languages, a variable is an indirect reference to an object, and the variable may
be modified to refer to a different object. This scheme is known as reference semantics.

C++ has value semantics, unlike other languages such as Java3 or Python that primarily have reference semantics. We
can illustrate the difference between these semantic choices using the Complex type we defined previously. Consider
the following code:

#include <iostream>

struct Complex {
double real;
double imaginary;

};

void Complex_print(Complex number) {
std::cout << number.real;
if (number.imaginary >= 0) {
std::cout << '+';

}
(continues on next page)

3 Java actually has value semantics for primitive types and reference semantics for class types.

36.4. Value Semantics 268



Programming and Data Structures, Release 0.3

(continued from previous page)

std::cout << number.imaginary << std::endl;
}

int main() {
Complex c1 = { 3.14, -1.7 };
Complex c2 = c1;
c2.real = 2.72;
Complex_print(c1);
Complex_print(c2);

}

In this code, we define a variable c1 of type Complex and give it an initial value. We then copy it to a c2 variable. If
we modify c2, the change does not affect c1, since the two variables each have their own object with which they are
associated. In memory, this looks something like the picture in Figure 36.1.

main

c1

Complex

3.14 real

-1.7 imaginary

c2

Complex

2.72 real

-1.7 imaginary

Figure 36.1: Two variables corresponding to separate Complex objects in memory.

Compiling and running the program produces:

$ g++ -std=c++17 -o complex.exe complex.cpp
$ ./complex.exe
3.14-1.7
2.72-1.7

We see that as expected, the modification to c2 does not affect c1. Compare this to a similar Python program:

class Complex:
def __init__(self, real, imaginary):

self.real = real
self.imaginary = imaginary

def Complex_print(number):
print(number.real, end='')
if number.imaginary >= 0:

print('+', end='')
print(number.imaginary)

(continues on next page)

36.4. Value Semantics 269



Programming and Data Structures, Release 0.3

(continued from previous page)

c1 = Complex(3.14, -1.7)
c2 = c1
c2.real = 2.72
Complex_print(c1)
Complex_print(c2)

In memory, the variables look like the diagram in Figure 36.2.

globals

c1

c2

Complex

2.72 real

-1.7 imaginary

Figure 36.2: Two variables indirectly referring to the same Complex object.

Running the program produces the following:

$ python3 complex.py
2.72-1.7
2.72-1.7

This confirms that c1 and c2 refer to the same object, since the modification to c2.real also affected c1.

We can also observe C++’s value semantics when we call a function. Suppose we want a function that modifies a
Complex object to be its conjugate, flipping the sign of the imaginary component of the complex number. The following
is an attempt to write this function:

void Complex_conjugate(Complex number) {
number.imaginary = -number.imaginary;

}

Suppose we insert the following statement prior to the print statements in our program above:

Complex_conjugate(c1);

Compiling and running the code, we get:

$ g++ -std=c++17 -o complex.exe complex.cpp
$ ./complex.exe
3.14-1.7
2.72-1.7

Nothing changes! This is because the number parameter of the Complex_conjugate() function is its own ob-
ject, and it receives a copy of c1‘s value. The diagram in Figure 36.3 illustrates this in memory at the end of the
Complex_conjugate() call.

The copy within the Complex_conjugate() function does have its imaginary component modified, but not the
object within the main() function. This behavior is called pass by value, since the value of c1 (the argument of the
function call) is copied into the number parameter object.

36.4. Value Semantics 270



Programming and Data Structures, Release 0.3

main

c1

Complex

3.14 real

-1.7 imaginary

c2

Complex

2.72 real

-1.7 imaginary

Complex_conjugate

number

Complex

3.14 real

1.7 imaginary

Figure 36.3: A function that received a copy of an argument object.

C++ also supports another mechanism for passing arguments: pass by reference. In this scheme, the parameter is an
alias of the object passed in as an argument rather than being its own object. We specify that a parameter should use
pass by reference by placing the ampersand (&) symbol to the left of the parameter name:

void Complex_conjugate(Complex &number) {
number.imaginary = -number.imaginary;

}

Compiling and running the code with this modified definition, gives us:

$ g++ -std=c++17 -o complex.exe complex.cpp
$ ./complex.exe
3.14+1.7
2.72-1.7

We see that c1 has indeed been conjugated. The memory diagram in Figure 36.4 depicts what the code looks like in
memory at the end of the call to Complex_conjugate(). In the figure, we denote an alias with a dashed line, and we
do not include a box next to the number name to reflect the fact that it is not associated with a new object.

36.4. Value Semantics 271



Programming and Data Structures, Release 0.3

Complex_conjugate

number

main

c1

Complex

3.14 real

-1.7 imaginary

c2

Complex

2.72 real

-1.7 imaginary

Figure 36.4: A function that received an alias to an existing argument object.

36.5 Example: Stickman

Having seen the basics of C++, let us proceed to write a larger C++ program that implements a stickman game (also
called hangman), which involves guessing the letters in a word or phrase. First, let’s sketch out how we want the game
to run. If the puzzle is the word hello, an unsuccessful game may play out like the following:

$ ./stickman.exe hello

_ _ _ _ _

Enter a lowercase letter to guess:
a

o

_ _ _ _ _

Enter a lowercase letter to guess:
b

o
|

_ _ _ _ _

Enter a lowercase letter to guess:
c

(continues on next page)

36.5. Example: Stickman 272

https://en.wikipedia.org/wiki/Hangman_(game)


Programming and Data Structures, Release 0.3

(continued from previous page)

o
/|

_ _ _ _ _

Enter a lowercase letter to guess:
d

o
/|\

_ _ _ _ _

Enter a lowercase letter to guess:
e

o
/|\

_ e _ _ _

Enter a lowercase letter to guess:
f

o
/|\
/ _ e _ _ _

Enter a lowercase letter to guess:
g

o
/|\
/ \ _ e _ _ _

Better luck next time!

We want to print out underscores corresponding to the letters in the puzzle, with a space between each of them. We
prompt the player for a guess, reading from the standard input stream corresponding to input from the console. If the
player guesses a letter that is not in the puzzle, we reveal a portion of a stick figure. If the player guesses a letter that is
in the puzzle, we reveal all occurrences of that letter and do not add to the stick figure. If the player guesses incorrectly
six times, the full stick figure is revealed, and the player loses.

The following is a successful run of the game (loosely following the frequency distribution of English letters):

$ ./stickman.exe hello

_ _ _ _ _

Enter a lowercase letter to guess:
e

(continues on next page)

36.5. Example: Stickman 273



Programming and Data Structures, Release 0.3

(continued from previous page)

_ e _ _ _

Enter a lowercase letter to guess:
t

o

_ e _ _ _

Enter a lowercase letter to guess:
s

o
|

_ e _ _ _

Enter a lowercase letter to guess:
a

o
/|

_ e _ _ _

Enter a lowercase letter to guess:
i

o
/|\

_ e _ _ _

Enter a lowercase letter to guess:
o

o
/|\

_ e _ _ o

Enter a lowercase letter to guess:
h

o
/|\

h e _ _ o

Enter a lowercase letter to guess:
r

o
/|\
/ h e _ _ o

Enter a lowercase letter to guess:

(continues on next page)

36.5. Example: Stickman 274



Programming and Data Structures, Release 0.3

(continued from previous page)

l

o
/|\
/ h e l l o

Congratulations!

36.5.1 Program Constants

Now that we have a general sense of how the program should behave, we can go ahead and start on our design for its
structure. First, let’s define some constants corresponding to the stick figure. The full figure is as follows:

o
/|\
/ \

This spans three lines. Unfortunately, a string literal in C++ cannot directly include a newline (line break) character.
However, we can use the escape sequence \n to tell the compiler we want a newline character. For instance, the
following prints Hello on one line, followed by world! on the next line4:

std::cout << "Hello\nworld!" << std::endl;

Escape sequences in general start with a backslash in C++. If we actually want a backslash character itself, it too needs
to be escaped: \\. Thus, the stick figure can be represented with the following string:

" o\n/|\\\n/ \\"

The string starts with a space to center the head of the stick figure, then the newline escape sequence \n to end the line,
then the right arm and torso, followed by the \\ escape sequence for a backslash to represent the left arm, followed by
another \n newline, then the right leg, a space, and finally the escaped left leg.

We can now work our way backwards to obtain partially revealed stick figures. There are two things we need to ensure
so that the figures line up in the output:

• Each figure has exactly two newline characters.

• Each figure has exactly three characters on the third line.

We can use a std::vector<std::string> to store the figures in order:

const std::vector<std::string> STICK_FIGURES = {
"\n\n ",
" o\n\n ",
" o\n |\n ",
" o\n/|\n ",
" o\n/|\\\n ",
" o\n/|\\\n/ ",
" o\n/|\\\n/ \\"

};

4 Note that std::endl is not the same as the newline character. It has the effect of printing the newline character to the target stream, but it also
flushes the stream, which immediately transfers the inserted data into the underlying output. In the absence of a flush, the stream is allowed to buffer
the data in memory, which generally allows for better performance than writing characters immediately.

36.5. Example: Stickman 275



Programming and Data Structures, Release 0.3

We prefix the type with the const qualifier to denote that this is a constant, and the compiler will prevent us from
modifying it. By convention, we name the constant using all capital letters, with underscores between words. We’ll
also use a constant for the maximum number of wrong guesses:

const int MAX_MISSES = 6;

36.5.2 The Game Struct

Next, we consider what data we need to represent the state of a game. We have to keep track of both the answer to
the puzzle, as well as what pieces have been guessed by the player and what pieces remain. We also need to track the
number of missed guesses. We will additionally keep a count of the number of letters remaining – this isn’t strictly
necessary, as we can recompute it when we need it, but it will make our job easier to keep track of it separately.

Before we define a struct, we also need to determine what underlying data types are appropriate to represent each
member variable. The counts can be represented by the int type, and the answer by the std::string type. We can
also represent what the player has and hasn’t guessed with a std::string – letters that have not been guessed will be
replaced with an underscore, while those that have been revealed will have the same values as in the answer. We can
now define the struct:

// A struct to represent the state of a game of stickman.
struct Game {
// The number of wrong guesses made so far.
int miss_count;

// The number of remaining unguessed positions in the puzzle.
int remaining_letters;

// The current state of the puzzle, with underscores representing
// unguessed letters.
std::string puzzle;

// The answer to the puzzle.
std::string answer;

};

Here, we have documented each component with a comment above it that describes its purpose.

36.5.3 Task Decomposition

Let’s now think about the functions we need in our program. We should break down each discrete task in the program
to its own function, so that each function has a small job, and so we can test each piece individually. The following are
some tasks that our program needs to do:

• Construct a Game object from a std::string answer, with the appropriate initial values for each member vari-
able.

• Print the a Game object, showing the player the current state of the game.

• Obtain a letter guess from the player, checking whether or not the guess is a valid letter.

• Update the Game based on a guessed letter.

• Perform the top-level game loop until the game ends.

36.5. Example: Stickman 276



Programming and Data Structures, Release 0.3

Let’s write function signatures corresponding to each of these tasks. We will write them in the form of a declaration5,
which excludes the body of a function, replacing it with a semicolon.

• The function that constructs a Game takes a std::string as an argument and returns a Game:

Game make_game(std::string answer);

• The function that prints a Game takes a Game object and does not return anything.

void print_game(Game game);

We actually don’t need a copy of the Game object, so we can specify pass by reference instead to obtain an alias
to the existing object:

void print_game(Game &game);

• The function that obtains a guess from the player doesn’t take any arguments, and it returns a character value:

char get_guess();

• The function that updates the game must take the Game object via pass by reference, so that we don’t get a copy
of the Game. It also takes in the guessed letter:

void update_game(Game &game, char guess);

• The top-level function takes the answer as a string and does not return anything:

void play_game(std::string answer);

36.5.4 Implementation

We can now proceed to implement these functions, starting with make_game(). The function needs to define a Game
object and set its member variables:

Game game = { 0, 0, answer, answer };

We’ve initialized the puzzle member variable to be a copy of the answer parameter to start, but we need to replace
each letter with an underscore. Let’s assume that we only hide lowercase letters, and that other characters are shown
to the player without needing to be guessed. This allows our puzzle to contain spaces and other punctuation. We can
write a separate function to determine whether or not a character is a lowercase letter:

bool is_lowercase(char value) {
return value >= 'a' && value <= 'z';

}

This logic takes advantage of the fact that in the ASCII standard (and most other character standards), the lowercase
letters are adjacent and in order. Thus, a lowercase letter must be both greater than or equal to the character 'a' and
no more than the character 'z'.

We can now loop over the puzzle member variable, replacing each lowercase character with an underscore:

5 Technically, a definition is also a declaration. A declaration that is not also a definition is more precisely called an incomplete or forward
declaration.

36.5. Example: Stickman 277



Programming and Data Structures, Release 0.3

for (std::size_t i = 0; i < game.puzzle.size(); ++i) {
if (is_lowercase(game.puzzle[i])) {
game.puzzle[i] = '_';
++game.remaining_letters;

}
}

Iterating over a string works the same way as iterating over a vector. We use a for loop from 0 up to the size of the
string, and we use square brackets to index into the string to obtain the character at that position. Unlike in some other
languages, C++ strings are mutable, meaning that they can be modified, and we do so here by replacing each lowercase
letter with an underscore character. We also increment the number of remaining letters each time we encounter a
lowercase letter.

Putting this all together, the following defines our make_game() function:

Game make_game(std::string answer) {
Game game = { 0, 0, answer, answer };
for (std::size_t i = 0; i < game.puzzle.size(); ++i) {
if (is_lowercase(game.puzzle[i])) {

game.puzzle[i] = '_';
++game.remaining_letters;

}
}
return game;

}

To print a game, we print out the stick figure corresponding to the current number of incorrect guesses:

std::cout << STICK_FIGURES[game.miss_count] << " ";

We add a bit of space between the figure and the puzzle. We then print out each of the characters in the puzzle, separated
by spaces:

for (std::size_t i = 0; i < game.puzzle.size(); ++i) {
std::cout << " " << game.puzzle[i];

}

In addition, we add extra newlines to visually separate the turns from each other. The full function definition is as
follows:

void print_game(Game &game) {
std::cout << endl;
std::cout << STICK_FIGURES[game.miss_count] << " ";
for (std::size_t i = 0; i < game.puzzle.size(); ++i) {
std::cout << " " << game.puzzle[i];

}
std::cout << "\n" << endl;

}

Next, we implement the get_guess() function to obtain a guess from the player. At a high level, this function needs
to do the following:

• Obtain a string from the standard input stream.

• Check whether the string is a valid guess – it must be a single letter, and the letter must be lowercase.

36.5. Example: Stickman 278



Programming and Data Structures, Release 0.3

• If the guess is invalid, repeat the process.

• If the guess is valid, return the guessed letter.

There’s one more case we need to handle – what happens if we reach the end of the stream, when no more input is
available? (On most systems, a user can manually end the standard input stream with the Ctrl-d keyboard input. We
will also see later that input can be redirected from a file, in which case the input stream ends when it reaches the end
of the file.) In such a case, we will return immediately with an error value that is different from any valid guess:

const char ERROR_CHAR = '\0'; // special "null" character

The following is a definition of get_guess():

char get_guess() {
std::cout << "Enter a lowercase letter to guess:" << std::endl;
std::string input;
while (std::cin >> input) {
if (input.size() != 1) {
cout << "Error: guess must be exactly one letter" << std::endl;

} else if (!is_lowercase(input[0])) {
cout << "Error: guess must be between a and z" << std::endl;

} else {
return input[0];

}
}
return ERROR_CHAR;

}

The std::cin object represents the standard input stream, similar to how std::cout is the standard output stream.
We extract from an input stream using the >> operator, which is called the stream-extraction operator in this context.
To extract a string, we use a std::string object as the right-hand side of the operator. It is common practice to
perform this extraction in the condition of a loop. If the extraction succeeds, the condition has a true value, and the
body of the loop runs. If the extraction fails (e.g. in the case of the end of the stream), the loop condition is false, and
the loop exits. In this function, we return ERROR_CHAR when the extraction fails.

The function starts by prompting the player to enter a guess. It then reads input in a loop, checking whether or not the
input is a valid guess. If the guess is invalid, a message describing the problem is printed, and the loop moves on to the
next iteration, reading another input. If the guess is valid, the lone character in the input string is returned.

We now go ahead and implement the update_game() function. The function needs to iterate over the characters in
the answer to check if any are the same as the guess. If so, we additionally need to check whether the letter has already
been guessed. If it has not been guessed, the corresponding position in the puzzle string has an underscore. In this
case, we replace the underscore with the actual letter and decrement the count of remaining letters:

for (std::size_t i = 0; i < game.answer.size(); ++i) {
if (game.answer[i] == guess && game.puzzle[i] == '_') {
game.puzzle[i] = guess; // replace the _ with the actual letter
--game.remaining_letters;

}
}

The function also needs to update the miss_count member variable depending on whether the guess was a correct
one or not. We can’t know this until we have traversed the entire puzzle, and we use a separate boolean to track this.
The full function definition below demonstrates this logic:

36.5. Example: Stickman 279



Programming and Data Structures, Release 0.3

void update_game(Game &game, char guess) {
bool correct_guess = false;
for (std::size_t i = 0; i < game.answer.size(); ++i) {
if (game.answer[i] == guess && game.puzzle[i] == '_') {
game.puzzle[i] = guess; // replace the _ with the actual letter
--game.remaining_letters;
correct_guess = true;

}
}
if (!correct_guess) {
++game.miss_count;

}
}

Lastly, we can write the top-level function that plays a game. It starts by creating a Game object via make_game(). It
then has a loop that:

• Prints the game using print_game().

• Obtains a guess from the player via get_guess(). If ERROR_CHAR is returned, the game immediately exits.

• Updates the game using update_game().

Other than the ERROR_CHAR condition, the game terminates either when all letters have been guessed, or the player has
made the maximum number of incorrect guesses. Thus, the following is the main loop:

while (game.remaining_letters > 0 && game.miss_count < MAX_MISSES) {
print_game(game);
char letter = get_guess();
if (letter == ERROR_CHAR) {

cout << "Quitting." << endl;
return; // quit the game

}
update_game(game, letter);

}

After the game is over, we print the game once more to show its final state. We then print a message to the player
depending on whether or not they won, as shown in the full function definition below:

void play_game(std::string answer) {
Game game = make_game(answer);
while (game.remaining_letters > 0 && game.miss_count < MAX_MISSES) {

print_game(game);
char letter = get_guess();
if (letter == ERROR_CHAR) {
std::cout << "Quitting." << std::endl;
return; // quit the game

}
update_game(game, letter);

}
print_game(game);
if (game.remaining_letters == 0) {
std::cout << "Congratulations!" << std::endl;

} else {
std::cout << "Better luck next time!" << std::endl;

(continues on next page)

36.5. Example: Stickman 280



Programming and Data Structures, Release 0.3

(continued from previous page)

}
}

36.5.5 Testing and File Organization

Before we write a main() function that plays the game, we might want to write some code that tests individual functions
in our program. For example, the following code does a basic test of the make_game() function:

#include <cassert>
#include <string>

void test_make_game() {
std::string answer = "hello world!";
Game game = make_game(answer);
assert(game.miss_count == 0);
assert(game.remaining_letters == 10);
assert(game.puzzle == "_____ _____!");
assert(game.answer == answer);

}

int main() {
test_make_game();

}

The test_make_game() function creates a Game object from the "hello world!" answer string. It then asserts that
each of the member variables of the Game object has the expected value. The assert() construct is defined in the
cassert library header, which we have included at the top.

Observe that the test code has its own main() function, so it needs to be in a separate .cpp source file than the
main() function that actually plays a game of stickman. Let’s assume that the function definitions above are placed in
stickman.cpp, and our test code is in test.cpp. The compiler will process these two files individually, even if they
are both provided in a single compilation command. How can we make the compiler aware of the functions defined in
stickman.cpp when it is compiling test.cpp?

The compiler actually only needs access to the declarations of the functions we use, not the definitions. It does need
access to the definition of the Game struct, since it needs to know what member variables the struct has. Thus, common
practice is to place struct definitions, function declarations, and constants in a separate header file, conventionally with
a file extension such as .hpp. The following code can be placed in stickman.hpp:

#include <string>
#include <vector>

// Stick figures corresponding to each possible number of misses.
const std::vector<std::string> STICK_FIGURES = {

"\n\n ",
" o\n\n ",
" o\n |\n ",
" o\n/|\n ",
" o\n/|\\\n ",
" o\n/|\\\n/ ",
" o\n/|\\\n/ \\"

};
(continues on next page)

36.5. Example: Stickman 281



Programming and Data Structures, Release 0.3

(continued from previous page)

// Maximum number of missed guesses.
const int MAX_MISSES = 6;

// Used to indicate an error when reading user input.
const char ERROR_CHAR = '\0'; // special "null" character

// A struct to represent the state of a game of stickman.
struct Game {
// The number of wrong guesses made so far.
int miss_count;

// The number of remaining unguessed positions in the puzzle.
int remaining_letters;

// The current state of the puzzle, with underscores representing
// unguessed letters.
std::string puzzle;

// The answer to the puzzle.
std::string answer;

};

// EFFECTS: Returns a properly initialized Game object corresponding
// to the given answer phrase.
Game make_game(std::string answer);

// REQUIRES: game.miss_count <= MAX_MISSES
// MODIFIES: cout
// EFFECTS: Prints the state of the game to standard output.
void print_game(Game &game);

// MODIFIES: cout, cin
// EFFECTS: Repeatedly prompts the user for a guess consisting of a
// single lowercase letter until a valid guess is provided,
// or the end of stream is reached. Returns the guess in
// the first case, or ERROR_CHAR in the second.
char get_guess();

// MODIFIES: game
// EFFECTS: Updates the game's puzzle and miss count according to
// whether the guess is a letter in the answer and has not
// been previously guessed.
void update_game(Game &game, char guess);

// MODIFIES: cout, cin
// EFFECTS: Plays a game of stickman with the given answer, reading
// guesses from standard in and writing game details to
// standard out. The game ends if the end of standard input
// is reached, the player exhausts the maximum number of
// incorrect guesses, or the player correctly guesses all
// letters.

(continues on next page)

36.5. Example: Stickman 282



Programming and Data Structures, Release 0.3

(continued from previous page)

void play_game(std::string answer);

We start by including the string and vector standard libraries, since the code in stickman.hpp uses both strings and
vectors. We then have our constant definitions, followed by the definition of the Game struct. Lastly, we have function
definitions for each task in the game. We have included documentation in the form of RMEs (requires, modifies, and
effects):

• The requires clause specifies what is required to be true prior to calling the function. These are also called
preconditions. All bets are off if these conditions are violated: we get the dreaded undefined behavior. The
function’s implementation is allowed to assume that these conditions are met – it is not required to check them
in any way.

• The modifies clause lists the objects outside the function that might modified by a call to the function. We
generally include cout if the standard output stream is written to, and cin if input is read from the standard
input stream. Pass-by-reference parameters are included if their contents might be modified.

• The effects clause tells us what the function actually does, i.e. what the return value means and how any objects
in the modifies clause are actually modified. The effects are sometimes also called postconditions. This clause
only specifies the “what”, not the “how”; we will come back to this later.

Now that we have this code in stickman.hpp, we can include it in both test.cpp and stickman.cpp. The contents
of test.cpp are as follows:

#include <cassert>
#include "stickman.hpp"

void test_make_game() {
std::string answer = "hello world!";
Game game = make_game(answer);
assert(game.miss_count == 0);
assert(game.remaining_letters == 10);
assert(game.puzzle == "_____ _____!");
assert(game.answer == answer);

}

int main() {
test_make_game();

}

The #include "stickman.hpp" directive pulls in the code from stickman.hpp into the current file. We use quotes
around the filename rather than the angle brackets we use with a library header. Observe that we no longer need the
#include <string> directive, since stickman.hpp already contains that.

The full contents of stickman.cpp are as follows:

#include <iostream>
#include "stickman.hpp"

using std::cin;
using std::cout;
using std::endl;
using std::size_t;
using std::string;

static bool is_lowercase(char value) {
(continues on next page)

36.5. Example: Stickman 283



Programming and Data Structures, Release 0.3

(continued from previous page)

return value >= 'a' && value <= 'z';
}

Game make_game(string answer) {
Game game = { 0, 0, answer, answer };
for (size_t i = 0; i < game.puzzle.size(); ++i) {
if (is_lowercase(game.puzzle[i])) {
game.puzzle[i] = '_';
++game.remaining_letters;

}
}
return game;

}

void print_game(Game &game) {
cout << endl;
cout << STICK_FIGURES[game.miss_count] << " ";
for (size_t i = 0; i < game.puzzle.size(); ++i) {
cout << " " << game.puzzle[i];

}
cout << "\n" << endl;

}

char get_guess() {
cout << "Enter a lowercase letter to guess:" << endl;
string input;
while (cin >> input) {
if (input.size() != 1) {
cout << "Error: guess must be exactly one letter" << endl;

} else if (!is_lowercase(input[0])) {
cout << "Error: guest must be between a and z" << endl;

} else {
return input[0];

}
}
return ERROR_CHAR;

}

void update_game(Game &game, char guess) {
bool correct_guess = false;
for (size_t i = 0; i < game.answer.size(); ++i) {
if (game.answer[i] == guess && game.puzzle[i] == '_') {
game.puzzle[i] = guess; // replace the _ with the actual letter
--game.remaining_letters;
correct_guess = true;

}
}
if (!correct_guess) {
++game.miss_count;

}
}

(continues on next page)

36.5. Example: Stickman 284



Programming and Data Structures, Release 0.3

(continued from previous page)

void play_game(string answer) {
Game game = make_game(answer);
while (game.remaining_letters > 0 && game.miss_count < MAX_MISSES) {

print_game(game);
char letter = get_guess();
if (letter == ERROR_CHAR) {
cout << "Quitting." << endl;
return; // quit the game

}
update_game(game, letter);

}
print_game(game);
if (game.remaining_letters == 0) {
cout << "Congratulations!" << endl;

} else {
cout << "Better luck next time!" << endl;

}
}

We include iostream, since that is not included by stickman.hpp. We don’t have struct or constant definitions, since
those are defined in the stickman.hpp header. Instead, we just have the definitions for each function.

We made a few minor changes from before:

• We added using directives so that we can use specific standard-library entities without the std:: qualification.

• We preceded the definition of is_lowercase()with the static keyword. This is common practice for a helper
function, and it prevents the function from conflicting with a function of the same name defined in some other
source file.

We can now compile and run the test code. We provide both .cpp source files to the compilation command, but not
the .hpp file – its contents are pulled directly into the .cpp files via the #include "stickman.hpp" directive:

$ g++ -std=c++17 -o test.exe test.cpp stickman.cpp
$ ./test.exe

The assertions all succeed, so we don’t see any output.

Lastly, we can write a separate play.cpp file that has a main() function to play the game. The following are the
contents of the file:

#include <iostream>
#include "stickman.hpp"

int main(int argc, char *argv[]) {
if (argc < 2) {
std::cout << "Usage: " << argv[0] << " <answer> " << std::endl;
return 1;

}
play_game(argv[1]);

}

We use an alternate signature for main() that gives us access to the command-line arguments given to the program.
The first argument is always the name of the program executable. We take the game answer as the second argument,
so we start by checking whether there are at least two arguments. If not, we print an error message and return with a
nonzero value. If an answer is provided, we invoke the top-level play_game() function with the answer.

36.5. Example: Stickman 285



Programming and Data Structures, Release 0.3

We compile and run the program as follows:

$ g++ -std=c++17 -o play.exe play.cpp stickman.cpp
$ ./play.exe world!

_ _ _ _ _ !

Enter a lowercase letter to guess:
e

o

_ _ _ _ _ !

Enter a lowercase letter to guess:
t

o
|

_ _ _ _ _ !

Enter a lowercase letter to guess:
s

o
/|

_ _ _ _ _ !

Enter a lowercase letter to guess:
o

o
/|

_ o _ _ _ !

Enter a lowercase letter to guess:
r

o
/|

_ o r _ _ !

Enter a lowercase letter to guess:
a

o
/|\

_ o r _ _ !

Enter a lowercase letter to guess:
l

(continues on next page)

36.5. Example: Stickman 286



Programming and Data Structures, Release 0.3

(continued from previous page)

o
/|\

_ o r l _ !

Enter a lowercase letter to guess:
d

o
/|\

_ o r l d !

Enter a lowercase letter to guess:
w

o
/|\

w o r l d !

Congratulations!

36.5. Example: Stickman 287



CHAPTER

THIRTYSEVEN

SOLVING PROBLEMS WITH RECURSION

To conclude our discussion of recursion, we take a look at several complex problems and how to approach them from
a recursive standpoint. Our strategy will be to:

• Identify the cases we can solve directly. These are base cases.

• Determine how to express a general case in terms of smaller subproblems. This is the recursive case.

For the latter, the first step is to identify appropriate subproblems, and the second is to figure out how to express the
solution for the whole problem in terms of the solutions to the subproblems. This leads to a recurrence relation, which
we can then implement in code.

37.1 Pancake Sort

Suppose you want to sort a stack of irregular pancakes such that they are in order, with the smallest at the top and the
largest at the bottom. So as not to contaminate the pancakes, you would like to do so just by repeatedly flipping a subset
of the pancakes with a spatula, which reverses the set of pancakes above the spatula, as shown in Figure 37.1. The goal
is to come up with a generalized algorithm for sorting the pancakes just by flipping substacks from any point in the
stack to the top.

Start Goal

Allowed Move

Figure 37.1: The pancake problem is to sort a stack of pancakes, where the only allowed move is to flip a subset of the
stack from a point in the middle to the top.

We start by identifying cases we can solve directly. An empty stack or one with just a single pancake are trivially sorted,
so these are the base cases.

We then need to identify a subproblem. For a stack of 𝑛 pancakes, a natural subproblem is to sort a stack of 𝑛 − 1
pancakes. So we now have to figure out how to reduce the problem of sorting 𝑛 pancakes to that of sorting 𝑛 − 1

288



Programming and Data Structures, Release 0.3

pancakes – we just need the largest pancake on the bottom, and then the substack above that has 𝑛 − 1 pancakes that
need sorting.

The final step is to come up with a way of getting the largest pancake to the bottom. We know that if that pancake is at
the top, we can flip the whole stack to get it to the bottom. So now the problem is how to get the largest pancake to the
top. Placing the spatula under that pancake and flipping the stack above does the trick.

Thus, we have identified our recurrence:

• Nothing need be done for a stack of zero or one.

• For 𝑛 pancakes where 𝑛 > 1, we place the spatula under the largest pancake and flip, moving it to the top. We
then flip the whole stack, moving the largest pancake to the bottom. We then repeat the process on the 𝑛 − 1
pancakes above the largest.

Figure 37.2 illustrates this recurrence.

smaller 
stack

Figure 37.2: The pancake-sort algorithm flips the largest pancake to the top, then the whole stack, then recurses on a
smaller stack.

We can implement this algorithm in code to sort an array of integers, considering the top of the stack to be at the
beginning of the array and the bottom at the end. We make use of the reverse() function we wrote previously to flip
a subset of the stack.

void pancake_sort(int *stack, int size) {
if (size > 1) {
// find position of largest element
int *largest = std::max_element(stack, stack + size);
// flip the stack from the top to the largest element
reverse(stack, largest);
// flip the whole stack
reverse(stack, stack + size - 1);
// recurse on a smaller stack
pancake_sort(stack, size - 1);

}
}

Here, we use std::max_element() from the <algorithm> library to find the largest item in the stack.

37.1. Pancake Sort 289



Programming and Data Structures, Release 0.3

37.2 Tower of Hanoi

The Tower of Hanoi puzzle consists of three rods with 𝑛 disks of varying size arranged in sorted order on the first rod,
as shown in Figure 37.3. The objective is to move the entire stack of disks to another rod, while obeying the following
constraints:

• Only one disk can be moved at a time.

• Only the top disk at a rod can be moved.

• A larger disk may never be placed on top of a smaller one.

Figure 37.3: The Tower of Hanoi problem moves a stack of disks from an initial rod to a target rod.

To come up with an algorithm to solve this puzzle, we first identify the base cases that can be solved directly. For 𝑛 = 1,
the lone disk can be moved directly without violating the constraints, constituting our base case.

For 𝑛 > 1, the subproblem is moving 𝑛 − 1 disks between rods. Then our task is to determine how to express the
solution for moving 𝑛 disks in terms of the solution to moving 𝑛− 1 disks. We observe that we can completely ignore
the largest disk when moving the 𝑛− 1 smaller disks; since any of the latter can be placed on the largest disk, the rod
with the largest disk acts just like an empty rod. Thus, we can move the 𝑛 − 1 smaller disks as a stack of their own,
from the start rod to the middle rod. We can then move the largest disk directly to the empty target rod. Then all that
is left is to move the stack of 𝑛− 1 smaller disks to the target rod.

Figure 37.4 illustrates this algorithm. We take the recursive leap of faith, assuming that we can move the smaller 𝑛− 1
stack as a whole using recursion, without worrying about the details of how it is done. As long as the subproblem is
closer to the base case than the original problem, we get to make the assumption that the subproblem will be solved
correctly.

smaller 
stack

Figure 37.4: An algorithm for the Tower of Hanoi is to use recursion to move a smaller stack and move the largest disk
on its own.

The following code implements the algorithm, printing out the moves required to move 𝑛 disks from a start to end rod:

// MODIFIES: cout
// EFFECTS: Prints a move of disk n from start to end.
void move(int n, int start, int end) {
std::cout << "Move disk " << n << " from rod " << start

<< " to rod " << end << std::endl;
(continues on next page)

37.2. Tower of Hanoi 290



Programming and Data Structures, Release 0.3

(continued from previous page)

}

// REQUIRES: n >= 1
// MODIFIES: cout
// EFFECTS: Prints the sequence of moves required to move n disks
// from start to end, using temp as the temporary rod.
void hanoi(int n, int start, int temp, int end) {
if (n == 1) {
move(n, start, end);

} else {
hanoi(n - 1, start, end, temp);
move(n, start, end);
hanoi(n - 1, temp, start, end);

}
}

The result of hanoi(5, 1, 2, 3) is as follows:

Move disk 1 from rod 1 to rod 3
Move disk 2 from rod 1 to rod 2
Move disk 1 from rod 3 to rod 2
Move disk 3 from rod 1 to rod 3
Move disk 1 from rod 2 to rod 1
Move disk 2 from rod 2 to rod 3
Move disk 1 from rod 1 to rod 3
Move disk 4 from rod 1 to rod 2
Move disk 1 from rod 3 to rod 2
Move disk 2 from rod 3 to rod 1
Move disk 1 from rod 2 to rod 1
Move disk 3 from rod 3 to rod 2
Move disk 1 from rod 1 to rod 3
Move disk 2 from rod 1 to rod 2
Move disk 1 from rod 3 to rod 2
Move disk 5 from rod 1 to rod 3
Move disk 1 from rod 2 to rod 1
Move disk 2 from rod 2 to rod 3
Move disk 1 from rod 1 to rod 3
Move disk 3 from rod 2 to rod 1
Move disk 1 from rod 3 to rod 2
Move disk 2 from rod 3 to rod 1
Move disk 1 from rod 2 to rod 1
Move disk 4 from rod 2 to rod 3
Move disk 1 from rod 1 to rod 3
Move disk 2 from rod 1 to rod 2
Move disk 1 from rod 3 to rod 2
Move disk 3 from rod 1 to rod 3
Move disk 1 from rod 2 to rod 1
Move disk 2 from rod 2 to rod 3
Move disk 1 from rod 1 to rod 3

37.2. Tower of Hanoi 291



Programming and Data Structures, Release 0.3

37.3 Counting Change

As a final example, let us consider the number of ways we can change a dollar into coins, using any quantity of half
dollars (50¢), quarters (25¢), dimes (10¢), nickels (5¢), and pennies (1¢). The following are three possible ways:

• $1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

• $1 = 2 quarters, 2 dimes, 30 pennies

• $1 = 100 pennies

There are too many ways to enumerate them all manually. Instead, let’s take a look at a smaller example of the same
problem: the number of ways to make change for 11¢ using dimes, nickels, and pennies. There are exactly four:

• 11¢ = 1 dime, 1 penny

• 11¢ = 2 nickels, 1 penny

• 11¢ = 1 nickel, 6 pennies

• 11¢ = 11 pennies

We can categorize these solutions according to which coins they use, as shown in Figure 37.5.

10 1 1 1 1 11 1 1 1 1 1 1

5 1 11 1 1 1

5 5 1

Use a 
dime

No dimes

Use a nickel No nickles

Make 1¢ using 
1, 5, 10

Make 6¢ using 
1, 5

Figure 37.5: The ways to count change can be subdivided into those that use a particular coin and those that don’t.

If we decide to use a particular coin, we are left with the subproblem of making a smaller amount of change using the
same set of coins. For example, if we choose to use a dime, we need only make 1¢ using dimes, nickels, and pennies.
On the other hand, if we choose not to use a particular coin, we must make the full amount of change with a smaller
set of coins. In our example, if we decide not to use a dime, we must make the full 11¢ with only nickels and pennies.
If we then use a nickel, we are left with making 6¢ with only nickels and pennies.

Figure 37.6 illustrates a decision tree for how to make change. At any point in time, we have a target amount and a set of
available coins. We then decide whether to use the largest of our available coins. Either decision leads to a subproblem:

• Making a smaller amount of change with the same set of available coins.

• Making the same amount of change with a smaller set of available coins.

Thus, we have a recurrence that expresses the solution for a full problem in terms of two subproblems.

We also need to identify base cases that we can solve directly:

• If the change amount is zero, there is only one way to do that: use no coins.

• If the change amount is negative, there is no way to do that, since we do not have negative coins.

37.3. Counting Change 292



Programming and Data Structures, Release 0.3

Amount: 11 ¢
Coins: 1, 5, 10

1 ¢
1, 5, 10

Use 10

-9 ¢
1, 5, 10

Use 10

-4 ¢
1, 5

Use 5

6 ¢
1, 5

Use 5

1 ¢
1, 5

Use 5

-4 ¢
1, 5

Use 5

0 ¢
1

Use 1

0 ¢
1

Use 1

0 ¢
1

Use 1

0 ¢
1

Use 1

10 ¢
1

Use 1

11 ¢
1, 5

No 10

1 ¢
1, 5

No 10

1 ¢
1

No 5

6 ¢
1

No 5

11 ¢
1

No 5

1 ¢
1

No 5

1 ¢
None

No 1
1 ¢

None

No 1

11 ¢
None

No 1

6 ¢
None

No 1

✔

✔ ✔ ✔

10 ¢
None

No 1

Make 1¢ using 1, 5, 10
Make 11¢ using 1, 5

Figure 37.6: The decision tree for which coin to use consists of a subtree that uses a particular coin and another that
doesn’t.

37.3. Counting Change 293



Programming and Data Structures, Release 0.3

• If the change amount is positive but we have no coins available, we cannot make that change.

The following implements the resulting algorithm in code:

// EFFECTS: Returns the number of ways to make amount in change
// using only the coin denominations in kinds.
int count_change(int amount, const int kinds[], int num_kinds) {
if (amount == 0) {
// one way to make nothing: use no coins
return 1;

} else if (amount < 0 || num_kinds < 1) {
// cannot make negative amount, or anything with no coins
return 0;

} else {
return
// use the largest coin, reducing the amount of change to make
count_change(amount - kinds[num_kinds - 1], kinds, num_kinds) +
// don't use the largest coin, reducing the available coins
count_change(amount, kinds, num_kinds - 1);

}
}

This tree-recursive implementation is very inefficient, repeating the same computations many times. Techniques such
as memoization and dynamic programming can drastically improve the efficiency, but they are beyond the scope of this
course. (With such a technique in place, the result is 292 for the number of ways to make change for a dollar.)

37.3. Counting Change 294



CHAPTER

THIRTYEIGHT

CONTAINERS OF POINTERS

Recall the linked-list class template we defined previously:

template <typename T>
class List {
public:

List();

void empty() const;

T & front();

void push_front(const T &datum);

void pop_front();

void push_back(const T &datum);

void pop_back();

...

private:
struct Node {
T datum;
Node *prev;
Node *next;

};

Node *first;
Node *last;

};

We declared the parameters of push_front() and push_back() to be passed by reference, avoiding making a copy
of the argument value. However, a Node stores a value of type T, so a copy is made when a node is created:

template <typename T>
void List<T>::push_back(const T &datum) {

Node *node = new Node{ datum, last, nullptr };
...

}

295



Programming and Data Structures, Release 0.3

With this in mind, consider the following example that inserts local objects into a list:

int main() {
Llama paul("Paul");
Llama carl("Carl");

List<Llama> todo;
todo.push_back(paul);
todo.push_back(carl);

for (auto &llama : todo) {
llama.feed();

}
}

The code creates two local Llama objects and inserts them into a list. It then iterates over the list to feed each llama.
However, as shown in Figure 38.1, the llamas in the list are copies of the local objects, so feeding them does not affect
the original llamas, which go hungry.

List<Llama>::Node

next

Stack

paul

Llama

"Paul" name

0x0 next

main

llama

carl

Llama

"Carl" name

true hungry
datum

Llama

"Paul" name

false hungry

List<Llama>::Node

datum

Llama

"Carl" name

false hungry

todo

List<Llama>

last

first

true hungry

Figure 38.1: Inserting objects into a container creates copies of those objects.

We can use indirection to avoid making a copy, storing pointers to llamas in a list rather than llamas themselves:

int main() {
Llama paul("Paul");
Llama carl("Carl");

List<Llama *> todo;
todo.push_back(&paul);
todo.push_back(&carl);

for (auto lptr : todo) {
lptr->feed();

(continues on next page)

296



Programming and Data Structures, Release 0.3

(continued from previous page)

}
}

The code iterates over the list by value rather than by reference; however, the values are pointers, so they still indirectly
refer to the appropriate Llama objects when they are copied. Figure 38.2 illustrates the result in memory. Our llamas
are properly fed and no longer go hungry.

List<Llama *>::Node

next

datum
List<Llama *>::Node

0x0 next

datum

Stack

paul

Llama

"Paul" name

main

lptr

carl

Llama

"Carl" name

false hungry

todo

List<Llama *>

last

first

false hungry

Figure 38.2: Storing pointers in a container.

By storing pointers in a container, we avoid making copies of the underlying objects.

Containers of pointers are also useful for keeping track of multiple orderings of the same objects. For instance, we
may want to store our llamas both in order of age as well as alphabetically by name. The following code creates Llama
objects in dynamic memory and stores pointers to them in two different lists:

int main() {
List<Llama *> by_age;
by_age.push_back(new Llama("Paul"));
by_age.push_back(new Llama("Carl"));

List<Llama *> by_name;
by_name.push_back(by_age.back());
by_name.push_back(by_age.front());

}

Figure 38.3 shows the resulting storage.

The code above, however, has a memory leak; the destructors for the lists only free the memory for the Node objects,
so the Llama objects do not get deleted. We need to manually delete them before the lists that we are using to track
them go away:

297



Programming and Data Structures, Release 0.3

List<Llama *>::Node

next

datum
List<Llama *>::Node

0x0 next

datum

Stack

Llama

"Paul" name

main

Llama

"Carl" name

true hungry
by_name

List<Llama *>

last

first

true hungry

by_age

List<Llama *>

last

first

List<Llama *>::Node

next

datum
List<Llama *>::Node

0x0 next

datum

Figure 38.3: Two containers that store pointers to the same objects.

int main() {
List<Llama *> by_age;
by_age.push_back(new Llama("Paul"));
by_age.push_back(new Llama("Carl"));

List<Llama *> by_name;
by_name.push_back(by_age.back());
by_name.push_back(by_age.front());

for (auto llama : by_age) {
delete llama;

}

for (auto llama : by_name) {
delete llama; // UNDEFINED BEHAVIOR

}
}

This code is erroneous: it deletes each Llama object twice, resulting in undefined behavior. We need to be careful to
avoid memory errors when we have multiple containers referring to the same dynamic objects. What we should do is
designate one container as the canonical “owner” of the objects, only deleting them when that container is about to die:

int main() {
List<Llama *> by_age; // "owner" of llama objects
by_age.push_back(new Llama("Paul"));
by_age.push_back(new Llama("Carl"));

List<Llama *> by_name;
by_name.push_back(by_age.back());
by_name.push_back(by_age.front());

for (auto llama : by_age) { // delete llamas when by_age is dying
delete llama;

}
}

298



Programming and Data Structures, Release 0.3

Alternatively, we can store the objects directly in the container that “owns” them, so that the destructor for the container
does the work of reclaiming those objects:

int main() {
List<Llama> by_age; // "owner" of llama objects
by_age.push_back(Llama("Paul"));
by_age.push_back(Llama("Carl"));

List<Llama *> by_name;
by_name.push_back(&by_age.back());
by_name.push_back(&by_age.front());

} // llamas die automatically when by_age dies

Here, we construct the Llama objects as temporaries when passing them to push_back(). Standard-library containers
have emplace_back() functions that avoid creating temporaries, and we pass the constructor arguments directly to
that function:

int main() {
List<Llama> by_age; // "owner" of llama objects
by_age.emplace_back("Paul");
by_age.emplace_back("Carl");

List<Llama *> by_name;
by_name.push_back(&by_age.back());
by_name.push_back(&by_age.front());

} // llamas die automatically when by_age dies

The result in memory is shown in Figure 38.4.

Stack

main

by_name

List<Llama *>

last

first

zoo

List<Llama>

last

first

List<Llama *>::Node

next

datum

List<Llama *>::Node

0x0 next

datum

List<Llama>::Node

next

0x0 next
datum

Llama

"Paul" name

true hungry

List<Llama>::Node

datum

Llama

"Carl" name

true hungry

Figure 38.4: Storing pointers to elements of a different container.

The llamas die automatically when the container in which they reside dies, at the end of main() in the code above.

299



Programming and Data Structures, Release 0.3

38.1 Sorting Containers of Pointers

The following code stores pointers to llamas in a container and then sorts them:

int main() {
vector<Llama *> llamas = { new Llama("Paul"), new Llama("Carl") };
std::sort(llamas.begin(), llamas.end());
...

}

While this code compiles, it sorts the pointers in the container by the address values they store, not by some property
of the Llama objects. This is because std::sort() uses the < operator by default, which for pointers just compares
the addresses they contain. The result depends on where the two Llama objects were placed in memory, which is
implementation-dependent.

Instead, we need to supply our own comparator to std::sort(), and the comparator can use whatever property we
choose of the underlying Llama objects:

class LlamaPointerNameLess {
public:
bool operator()(const Llama *l1, const Llama *l2) const {
return l1->get_name() < l2->get_name();

}
};

Here, we have chosen to sort llamas by name. The comparator operates on pointers to Llamas, since that is what the
container stores. We then call std::sort() as follows:

std::sort(llamas.begin(), llamas.end(), LlamaPointerNameLess());

The third argument is a default-constructed, temporary LlamaPointerNameLess object. Now std::sort() will use
that to compare the Llama * elements, resulting in them being ordered by the names of the respective llamas.

We can use different comparators to maintain different orderings of the same objects:

vector<Llama> llamas = { Llama("Paul"), Llama("Carl") };

vector<Llama *> by_age;
for (auto &llama : llamas) {
by_age.push_back(&llama);

}
std::sort(by_age.begin(), by_age.end(), LlamaPointerAgeLess());

vector<Llama *> by_name = by_age;
std::sort(by_name.begin(), by_name.end(), LlamaPointerNameLess());

38.1. Sorting Containers of Pointers 300



Programming and Data Structures, Release 0.3

38.2 Containers of Polymorphic Objects

Keeping track of polymorphic objects, meaning objects of different derived classes of the same base class, requires
indirection as we saw previously. Containers of pointers enable this indirection:

int main() {
vector<Animal *> zoo;
zoo.push_back(new Gorilla("Colo"));
zoo.push_back(new Llama("Paul"));
zoo.push_back(new Panda("Po"));

for (auto animal_ptr : zoo) {
animal_ptr->talk(); // prints different messages for each animal

}

...
}

As long as the talk() function is virtual, dynamic binding will be used, and each animal will print its own sound.

When we are done with the objects, we need to delete them ourselves, since they are in dynamic memory:

for (auto animal_ptr : zoo) {
delete animal_ptr;

}

As we saw previously, this requires the Animal destructor to be declared as virtual so that dynamic binding is used
to call the appropriate destructor for each object.

38.2. Containers of Polymorphic Objects 301



CHAPTER

THIRTYNINE

C AND C++ STRINGS

A string is a sequence of characters, and it represents text data. C++ has two string abstractions, which we refer to as
C-style strings and C++ strings.

39.1 C-Style Strings

In the original C language, strings are represented as just an array of characters, which have the type char. The
following initializes a string representing the characters in the word hello:

char str[6] = { 'h', 'e', 'l', 'l', 'o', '\0' };

0x1000 'h' str[0]

0x1001 'e' str[1]

0x1002 'l' str[2]

0x1003 'l' str[3]

0x1004 'o' str[4]

0x1005 '\0' str[5]

str:

Figure 39.1: Array representation of a string.

Character literals are enclosed in single quotes. For example 'h' is the character literal corresponding to the lower-case
letter h. The representation of the string in memory is shown in Figure 39.1.

A C-style string has a sentinel value at its end, the special null character, denoted by '\0'. This is not the same as a
null pointer, which is denoted by nullptr, nor the character '0', which denotes the digit 0. The null character signals
the end of the string, and algorithms on C-style strings rely on its presence to determine where the string ends.

A character array can also be initialized with a string literal:

char str2[6] = "hello";
char str3[] = "hello";

If the size of the array is specified, it must have sufficient space for the null terminator. In the second case above, the
size of the array is inferred as 6 from the string literal that is used to initialize it. A string literal implicitly contains the
null terminator at its end, so both str2 and str3 are initialized to end with a null terminator.

302



Programming and Data Structures, Release 0.3

The char type is an atomic type that is represented by numerical values. The ASCII standard specifies the numerical
values used to represent each character. For instance, the null character '\0' is represented by the ASCII value 0, the
digit '0' is represented by the ASCII value 48, and the letter 'h' is represented by the ASCII value 104. Figure 39.2
illustrates the ASCII values that represent the string "hello".

0x1000 104 str[0]

0x1001 101 str[1]

0x1002 108 str[2]

0x1003 108 str[3]

0x1004 111 str[4]

0x1005 0 str[5]

str:

Figure 39.2: ASCII values of the characters in a string.

An important feature of the ASCII standard is that the digits 0-9 are represented by consecutive values, the capital
letters A-Z are also represented by consecutive values, and the lower-case letters a-z as well. The following function
determines whether a character is a letter:

bool is_alpha(char ch) {
return (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z');

}

In C++, atomic objects with value 0 are considered to have false truth values, while atomic objects with nonzero values
are considered to be true. Thus, the null terminator is the only character that has a false truth value. We will make use
of that when implementing algorithms on C-style strings.

Since C-style strings are just arrays, the pitfalls that apply to arrays also apply to C-style strings. For instance, a char
array turns into a pointer to char when its value is required. Thus, comparisons and assignments on C-style strings
cannot be done with the built-in operators:

char str1[6] = "hello";
char str2[6] = "hello";
char str3[6] = "apple";
char *ptr = str1; // manually convert array into pointer;

// ptr points to first character of str1

// Test for equality?
str1 == str2; // false; tests pointer equality

// Copy strings?
str1 = str3; // does not compile; RHS turns into pointer

// Copy through pointer?
ptr = str3; // sets ptr to point to first character of str3

When initializing a variable from a string literal, the variable can be an array, in which case the individual characters
are initialized from those in the string literal:

char str1[6] = "hello";

39.1. C-Style Strings 303



Programming and Data Structures, Release 0.3

The variable can also be a pointer, in which case it just points to the first character in the string literal itself. String
literals are stored in memory; however, the C++ standard prohibits us from modifying the memory used to store a string
literal. Thus, we must use the const keyword when specifying the element type of the pointer:

const char *ptr = "hello";

39.1.1 String Traversal and Functions

The conventional pattern for iterating over a C-style string is to use traversal by pointer: walk a pointer across the
elements until the end is reached. However, unlike the traversal pattern we saw previously where we already knew the
length, we don’t know the end of a C-style string until we reach the null terminator. Thus, we iterate until we reach that
sentinel value:

// REQUIRES: str points to a valid, null-terminated string
// EFFECTS: Returns the length of str, not including the null
// terminator.
int strlen(const char *str) {
const char *ptr = str;
while (*ptr != '\0') {
++ptr;

}
return ptr - str;

}

Here, we compute the length of a string by creating a new pointer that points to the first character. We then increment
that pointer1 until reaching the null terminator. Then the distance between that pointer and the original is equal to the
number of non-null characters in the string.

We can also use the truth value of the null character in the test of the while loop:

int strlen(const char *str) {
const char *ptr = str;
while (*ptr) {
++ptr;

}
return ptr - str;

}

We can also use a for loop, with an empty initialization and body:

int strlen(const char *str) {
const char *ptr = str;
for (; *ptr; ++ptr);
return ptr - str;

}

The built-in <cstring> header contains a definition for strlen().

We saw previously that we cannot copy C-style strings with the assignment operator. Instead, we need to use a function:

1 The type const char * denotes a pointer that is pointing at a constant character. This means that the pointed-to character cannot be modified
through the pointer. However, the pointer itself can be modified to point to a different character, which is what happens when we increment the
pointer.

39.1. C-Style Strings 304



Programming and Data Structures, Release 0.3

// REQUIRES: src points to a valid, null-terminated string;
// dst points to an array with >= strlen(src) + 1 elements
// MODIFIES: *dst
// EFFECTS: Copies the characters from src into dst, including the
// null terminator.
void strcpy(char *dst, const char *src) {
while (*src) {
*dst = *src;
++src;
++dst;

}
*dst = *src; // null terminator

}

The function takes in a destination pointer; the pointed-to type must be non-const, since the function will modify the
elements. The function does not need to modify the source string, so the corresponding parameter is a pointer to const
char. Then each non-null character from src is copied into dst. The last line also copies the null terminator into dst.

The strcpy() function can be written more succinctly by relying on the behavior of the postfix increment operator.
There are two versions of the increment operator, and their evaluation process is visualized in Figure 39.3:

Side Effect
+1

Side Effect
+1

Evaluate Evaluate

++x x++

4 3

3 x

4 x

4 x

3 x

4 x

4 x

3 temp

Prefix Increment Postfix Increment

Figure 39.3: Evaluation process for prefix and postfix increment.

• The prefix increment operator, when applied to an atomic object, increments the object and evaluates to the object
itself, which now contains the new value:

int x = 3;
cout << ++x; // prints 4
cout << x; // prints 4

• The postfix increment operator, when applied to an atomic object, increments the object but evaluates to the old
value:

39.1. C-Style Strings 305



Programming and Data Structures, Release 0.3

int x = 3;
cout << x++; // prints 3
cout << x; // prints 4

There are also both prefix and postfix versions of the decrement operator (--).

A word of caution when writing expressions that have side effects, such as increment: in C++, the order in which
subexpressions are evaluated within a larger expression is for the most part unspecified. Thus, the following results in
implementation-dependent behavior:

int x = 3;
cout << ++x << "," << x; // can print 4,4 or 4,3

If the second x in the print statement is evaluated before ++x, then a 3 will be printed out for its value. On the other
hand, if the second x is evaluated after ++x, a 4 will be printed out for its value. Code like this, where a single statement
contains two subexpressions that use the same variable but at least one modifies it, should be avoided.

Another feature that our shorter version of strcpy() will rely on is that an assignment evaluates back to the left-hand-
side object:

int x = 3;
int y = -4;
++(x = y); // copies -4 into x, then increments x
cout << x; // prints -3
cout << (y = x); // prints -3

The succinct version of strcpy() is as follows:

void strcpy(char *dst, const char *src) {
while (*dst++ = *src++);

}

The test increments both pointers, but since it is using postfix increment, the expressions themselves evaluate to the old
values. Thus, in the first iteration, dst++ and src++ evaluate to the addresses of the first character in each string. The
rest of the test expression dereferences the pointers and copies the source value to the destination. The assignment then
evaluates to the left-hand-side object, so the test checks the truth value of that object’s value. As long as the character
that was copied was not the null terminator, it will be true, and the loop will continue on to the next character. When
the null terminator is reached, the assignment copies it to the destination but then produces a false value, so the loop
terminates immediately after copying over the null terminator.

The <cstring> library also contains a version of strcpy().

39.1.2 Printing C-Style Arrays

Previously, we say that printing out an array prints out the address of its first character, since the array turns into a
pointer. Printing out a pointer just prints out the address value contained in the pointer.

On the other hand, C++ output streams have special treatment of pointers to char. If a pointer to char is passed to
cout, it will assume that the pointer is pointing into a C-style string and print out every character until it reaches a null
terminator:

char str[] = "hello";
char *ptr = str;
cout << ptr; // prints out hello
cout << str; // str turns into a pointer; prints out hello

39.1. C-Style Strings 306



Programming and Data Structures, Release 0.3

This means that we must ensure that a char * is actually pointing to a null-terminated string before passing it to cout.
The following results in undefined behavior:

char array[] = { 'h', 'e', 'l', 'l', 'o' }; // not null-terminated
char ch = 'w'; // just a character
cout << array; // undefined behavior -- dereferences past end of array
cout << &ch; // undefined behavior -- dereferences past ch

To print out the address value of a char *, we must convert it into a void *, which is a pointer that can point to any
kind of object:

cout << static_cast<void *>(&ch); // prints address of ch

39.2 C++ Strings

C++ strings are class-type objects represented by the string type2. They are not arrays, though the implementation
may use arrays under the hood. Thus, C++ strings are to C-style strings as vectors are to built-in arrays.

The following table compares C-style and C++ strings:

C-Style Strings C++ Strings
Library Header <cstring> <string>
Declaration char cstr[]; char *cstr; string str
Length strlen(cstr) str.length()
Copy Value strcpy(cstr1, cstr2) str1 = str2
Indexing cstr[i] str[i]
Concatenate strcat(cstr1, cstr2) str1 += str2
Compare !strcmp(cstr1, cstr2) str1 == str2

A C++ string can be converted into a C-style string by calling .c_str() on it:

const char *cstr = str.c_str();

A C-style string can be converted into a C++ string by explicitly or implicitly calling the string constructor:

string str1 = string(cstr); // explicit call
string str = cstr; // implicit call

C++ strings can be compared with the built-in comparison operators, which compare them lexicographically: the ASCII
values of elements are compared one by one, and if the two strings differ in a character, then the string whose character
has a lower ASCII value is considered less than the other. If one string is a prefix of the other, then the shorter one is
less than the longer (which results from comparing the ASCII value of the null terminator to a non-null character).

C-style strings cannot be compared with the built-in operators – these would just do pointer comparisons. Instead, the
strcmp() function can be used, and strcmp(str1, str2) returns:

• a negative value if str1 is lexicographically less than str2

• a positive value if str1 is lexicographically greater than str2

• 0 if the two strings have equal values
2 Technically, string is an alias for basic_string<char>, so you may see the latter in compiler errors.

39.2. C++ Strings 307



Programming and Data Structures, Release 0.3

The expression !strcmp(str1, str2) is often used to check for equality – if the two strings are equal, strcmp()
returns 0, which has truth value false.

39.2. C++ Strings 308



CHAPTER

FORTY

ABOUT

These notes were written by Amir Kamil in Winter 2019 for EECS 280. They are based on the lecture slides by James
Juett and Amir Kamil, which were themselves based on slides by Andrew DeOrio and many others.

This text is licensed under the Creative Commons Attribution-ShareAlike 4.0 International license.

309

https://eecs280.org
https://creativecommons.org/licenses/by-sa/4.0/

	I Foundations
	Introduction
	C++ Fundamentals
	Types
	Arithmetic and Comparisons
	Library Types

	Control Structures
	Procedural Abstraction
	Code Organization in C++
	The Compilation Process
	Specification Comments (RMEs)
	REQUIRES Clause
	MODIFIES Clause
	EFFECTS Clause

	Properties of Procedural Abstraction

	Testing
	Machine Model I
	Pointers
	Pointers and References


	Machine Model II
	Pointer Errors
	Function Calls and the Call Stack
	Function-Call Process



	II Data Abstraction
	The const Keyword
	References and const
	Pointers and const
	const Conversions

	Structs
	Compound Objects and const

	Abstract Data Types in C
	Representation Invariants
	Plain Old Data
	Abstraction Layers
	Testing an ADT

	Command-Line Arguments
	Input and Output (I/O)
	I/O Redirection
	Example: Adding Integers
	File I/O

	More on Streams
	String Streams

	Program Design
	Abstract Data Types in C++
	Implicit this->
	Member Accessibility
	Constructors
	Default Initialization and Default Constructors
	Implicit Default Constructor

	Get and Set Functions
	Information Hiding
	Testing a C++ ADT
	Member-Initialization Order
	Delegating Constructors

	Derived Classes and Inheritance
	Ordering of Constructors and Destructors
	Name Lookup and Hiding

	Polymorphism
	Function Overloading
	Subtype Polymorphism
	Static and Dynamic Binding
	dynamic_cast
	Member Lookup Revisited
	The override Keyword
	Abstract Classes and Interfaces


	III Containers and Dynamic Memory
	Containers and Iterators
	Range-Based For Loops
	Iterating over a Map


	Time Complexity
	Arrays
	Arrays and Pointers
	Pointer Arithmetic
	Array Indexing
	More on Array Decay
	The End of an Array
	Array Traversal
	Arrays and const

	Array-based Containers
	Set Operations
	Code Example
	Public Interface
	static Data Members
	Data Representation
	size_t
	Implementation
	Sorted Representation

	Container ADTs and Polymorphism
	Operator Overloading
	Parametric Polymorphism
	Function Templates
	Compiling Templates
	Include Guards
	Member-Function Templates
	Insertion-Operator Template
	Another Example

	Static vs. Dynamic Polymorphism
	Type Aliases
	The Factory Pattern
	Liskov Substitution Principle


	Memory Models and Dynamic Memory
	Static Local Variables
	Automatic Storage Duration
	Address Space
	The new and delete Operators
	Dynamic Arrays
	Lifetime of Class-Type Objects
	Dynamic-Memory Errors
	Uses for Dynamic Memory

	Managing Dynamic Memory
	RAII
	Growable Set

	The Big Three
	Copy Constructor
	Assignment Operator
	Shallow and Deep Copies
	The Law of the Big Three
	Example: Calls to the Big Three
	Destructors and Polymorphism

	Linked Lists
	Traversing a Linked List
	Linked List Big Three
	Insertion and Removal at the End
	List Template

	Implementing Iterators
	Iterator Definition
	Dereference and Increment Operators
	The typename Keyword
	Equality Comparisons
	Creating Iterators

	Friend Declarations
	Generic Iterator Functions
	Iterator Invalidation
	Type Deduction


	IV Functional Programming
	Function Objects
	Function-Pointer Types
	Function-Pointer Parameters
	Functors
	Comparators
	Iterating over a Sequence

	Impostor Syndrome
	Recursion
	Tail Recursion
	Kinds of Recursion
	Iteration vs. Recursion

	Structural Recursion
	Recursive Lists
	Trees
	Tree Traversals


	Binary Search Trees (BSTs)
	The BinarySearchTree Interface
	BST-Based Set

	Maps and Pairs

	V Odds and Ends
	Error Handling and Exceptions
	Global Error Codes
	Object Error States
	Return Error Codes
	Exceptions
	Exception Objects
	Try/Catch Blocks
	Exception Propagation
	Exception Examples

	Error Handling vs. Undefined Behavior


	VI Supplemental Material
	Introduction to C++
	A Simple Program
	Static Typing
	Compound Data
	Value Semantics
	Example: Stickman
	Program Constants
	The Game Struct
	Task Decomposition
	Implementation
	Testing and File Organization


	Solving Problems with Recursion
	Pancake Sort
	Tower of Hanoi
	Counting Change

	Containers of Pointers
	Sorting Containers of Pointers
	Containers of Polymorphic Objects

	C and C++ Strings
	C-Style Strings
	String Traversal and Functions
	Printing C-Style Arrays

	C++ Strings

	About


