
p4-web

EECS 280 Project 4: Web
Due 8:00pm Tuesday November 14, 2023. You may work alone or with a partner (partnership
guidelines).

Fall 2023 release.

Introduction

Build a web server for an office hours queue.

The learning goals of this project include Container ADTs, Dynamic Memory, The Big Three, Linked
Lists, and Iterators. You will gain experience with new and delete , constructors and destructors,
and the list data structure.

When you’re done, you’ll have a working web application accessible through your browser.

 IMPORTANT
For Fall 2023, the driver portion of the project that implements the web API (api.cpp) is
OPTIONAL and is NOT GRADED on the autograder. The List.hpp and List_tests.cpp
files are all that is required. You are still welcome to do the whole project if you like, or to return
to it on your own after the course has finished.

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 1/23

https://eecs280staff.github.io/p4-web/
https://eecs280.org/syllabus.html#project-partnerships
https://eecs280.org/syllabus.html#project-partnerships

Web app background

When you browse to a web site like our EECS 280 office hours queue http://eecsoh.org, your
computer makes a request and a server returns a response.

Simple web pages

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 2/23

http://eecsoh.org/

Your web browser makes a request when you visit a page. First, it connects to the eecsoh.org
server, then requests the /index.html page (“no filename” is a shortcut for index.html).

The eecsoh.org server responds with plain text in HTML format. Your browser renders the HTML,
adding colors, formatting and images.

HTTP

HTTP is the protocol that describes what requests and responses should look like. Both are plain
text sent from one computer to another computer through the internet. Let’s take a second look at
the previous example in more detail.

The request contains an action (GET), a path (/eecsoh/), a version (HTTP/1.1) and some
headers (Host: localhost). Headers are key/value pairs separated by a colon.

The response contains a version (HTTP/1.1), a status code (200), status description (OK), some
headers (Content-Type ... and Content-Length ...), and a body (<html> ... </html>).

Web 2.0 applications

GET / HTTP/1.1

1

2

3

4

5

6

7

8

HTTP/1.1 200 OK

<html>

 <body>

 EECS Office Hours

 ...

 </body>

</html>

1

2

GET /eecsoh/ HTTP/1.1
Host: localhost

1

2

3

4

5

6

7

8

9

10

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8

Content-Length: 3316

<html>

 <body>

 EECS Office Hours

 ...

 </body>

</html>

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 3/23

Web 2.0 applications like the EECS 280 office hours queue interact with the user. Let’s take a look
at what happens when you click the “Sign Up” button.

First, the client’s web browser sends an HTTP request to the server. The request might look like this.
Notice that the request includes a body with the information entered by the client. The information is
in a machine-readable format called JSON.

Next, the server receives the request sent by the client. The server acts on the request.

1. Deserialize the JSON data, converting it into a data structure

2. Modify an internal data structure, possibly a list

3. Create a response data structure

4. Serialize the response data structure, converting it to JSON

5. Send the response to the client

The response to the client might look like this.

1

2

3

4

5

6

7

8

9

POST /api/queue/tail/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 59

{

 "uniqname": "awdeorio",
 "location": "2705 BBB"
}

1

2

3

4

5

6

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8

Content-Length: 78

{

 "location": "2705 BBB",

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 4/23

Finally, the client receives the response and updates the web page, showing the up-to-date queue in
this example.

A server that responds to requests with data instead of HTML is called a REST API
(REpresentational State Transfer). REST APIs return data in a machine-readable format like JSON.

Our tutorial Working with JSON provides many more details about the JSON format.

Setup

Set up your visual debugger and version control, then submit to the autograder.

Visual debugger

During setup, name your project p4-web . Use this starter files link:
https://eecs280staff.github.io/p4-web/starter-files.tar.gz

VS Code Visual Studio Xcode

If you created a main.cpp while following the setup tutorial, rename it to api.cpp . Otherwise,
create a new file api.cpp . You should end up with a folder with starter files that look like this. You
may have already renamed files like List.hpp.starter to List.hpp .

Here’s a short description of each starter file.

File(s) Description

List.hpp.starter Starter code for the List .

List_tests.cpp Your List unit tests.

7

8

9

 "position": 1,
 "uniqname": "awdeorio"
}

$ ls

List.hpp public_error01.in test03.in

List_compile_check.cpp public_error01.out.correct test03.out.correct

List_public_test.cpp server.py test04.in

List_tests.cpp test01.in test04.out.correct

Makefile test01.out.correct test05.in

index.html test02.in test05.out.correct

json.hpp test02.out.correct unit_test_framework.hpp

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 5/23

file:///home/runner/work/p4-web/p4-web/_site/json.html
https://eecs280staff.github.io/tutorials/setup_vscode.html
https://eecs280staff.github.io/tutorials/setup_visualstudio.html
https://eecs280staff.github.io/tutorials/setup_xcode.html

File(s) Description

List_compile_check.cpp Compile check test for List

List_public_test.cpp A very small test case for List .

test01.in

test01.out.correct

test02.in

test02.out.correct

test03.in

test03.out.correct

test04.in

test04.out.correct

test05.in

test05.out.correct

Simple test cases for the server program.

Makefile Helper commands for building.

json.hpp Library for working with JSON.

unit_test_framework.hpp A simple unit-testing framework.

server.py Python wrapper script for running the office hours queue server.

index.html HTML for the office hours queue.

Version control

Set up version control using the Version control tutorial.

After you’re done, you should have a local repository with a “clean” status and your local repository
should be connected to a remote GitHub repository.

You should have a .gitignore file (instructions).

1

2

3

4

5

6

7

8

$ git status

On branch main

Your branch is up-to-date with 'origin/main'.

nothing to commit, working tree clean

$ git remote -v

origin https://github.com/awdeorio/p4-web.git (fetch)

origin https://githubcom/awdeorio/p4-web.git (push)

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 6/23

file:///home/runner/work/p4-web/p4-web/_site/json.html
https://eecs280staff.github.io/tutorials/setup_git.html
https://eecs280staff.github.io/tutorials/setup_git.html#add-a-gitignore-file

Group registration

Register your partnership (or working alone) on the Autograder. Then, submit the code you have.

Linked list

Implement your doubly linked list in List.hpp . List.hpp.starter provides prototypes for each
function. Because List is a templated container, function implementations go in List.hpp . There
is no List.cpp .

While the List from lecture was singly linked, this List is doubly linked. This List also contains
an iterator interface.

Do not modify the public interface of the List class. Implement a doubly-linked list. No arrays or
vectors, etc. Manage memory allocation so that there are no memory leaks (Leak checking tutorial).

Compile and run the provided compile check and List tests.

Write tests for List in List_tests.cpp using the Unit Test Framework. You’ll submit these tests
to the autograder. See the Unit Test Grading section.

Setup

Rename these files (VS Code (macOS), VS Code (Windows), Visual Studio, Xcode, CLI):

List.hpp.starter -> List.hpp

List_tests.cpp.starter -> List_tests.cpp

1

2

3

$ head .gitignore

This is a sample .gitignore file that's useful for C++ projects.

...

1

2

3

$ make List_compile_check.exe

$ make List_public_test.exe

$./List_public_test.exe

1

2

$ make List_tests.exe

$./List_tests.exe

 Pro-tip: Getting an error about typename ? Take a look at our reference on Typename.

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 7/23

https://autograder.io/
https://eecs280staff.github.io/tutorials/setup_leakcheck.html
https://eecs280staff.github.io/unit_test_framework/
https://eecs280staff.github.io/tutorials/setup_vscode_macos.html#rename-files
https://eecs280staff.github.io/tutorials/setup_vscode_wsl.html#rename-files
https://eecs280staff.github.io/tutorials/setup_visualstudio.html#rename-files
https://eecs280staff.github.io/tutorials/setup_xcode.html#rename-files
https://eecs280staff.github.io/tutorials/cli.html#mv
file:///home/runner/work/p4-web/p4-web/_site/typename.html

Edit List.hpp , adding a function stub for each function prototype in List.hpp . Here’s an
example.

The List tests should compile and run. The public tests will fail until you implement the functions.
The file for your test cases (List_tests.cpp) will pass because it initially only contains
ASSERT_TRUE(true) .

At this point, we haven’t written the List Iterator, so List_compile_check.exe won’t compile. You’ll
need to take a look at the lecture about iterators and write your own tests. After you do, use the
provided compile check like this:

Configure your IDE to debug either the public tests or your own tests.

Public tests Your own tests

VS Code
(macOS)

Set program name to:
${workspaceFolder}/List_public_test.exe

Set program name to:
${workspaceFolder}/List_test

VS Code
(Windows)

Set program name to:
${workspaceFolder}/List_public_test.exe

Set program name to:
${workspaceFolder}/List_test

Xcode
Include compile sources:
List_public_test.cpp , List.hpp

Include compile sources:
List_tests.cpp , List.hpp

1

2

3

4

template<typename T>
bool List<T>::empty() const {
 assert(false);

}

1

2

3

4

$ make List_public_test.exe

$./List_public_test.exe

$ make List_tests.exe

$./List_tests.exe

$ make List_compile_check.exe

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 8/23

https://eecs280staff.github.io/tutorials/setup_vscode_macos.html#edit-launchjson-program
https://eecs280staff.github.io/tutorials/setup_vscode_macos.html#edit-launchjson-program
https://eecs280staff.github.io/tutorials/setup_vscode_wsl.html#edit-launchjson-program
https://eecs280staff.github.io/tutorials/setup_vscode_wsl.html#edit-launchjson-program
https://eecs280staff.github.io/tutorials/setup_xcode.html#compile-sources
https://eecs280staff.github.io/tutorials/setup_xcode.html#compile-sources

Public tests Your own tests

Visual
Studio

Exclude files from the build:

Include List_public_test.cpp

Exclude List_compile_check.cpp ,
List_tests.cpp , api.cpp , main.cpp

(if present)

Exclude files from the build:

Include List_tests.cpp

Exclude
List_compile_check.cpp ,
List_public_test.cpp ,
api.cpp , main.cpp (if pres

Queue REST API (Optional)

The top-level application is an office hours queue REST API that reads requests from stdin (cin)
and writes responses to stdout (cout). Requests and responses are formatted using a simplified
subset of real HTTP.

Write the program in api.cpp . Run it with one of our provided input files.

Setup

 IMPORTANT
For Fall 2023, the driver portion of the project that implements the web API (api.cpp) is
OPTIONAL and is NOT GRADED on the autograder. The List.hpp and List_tests.cpp
files are all that is required. You are still welcome to do the whole project if you like, or to return
to it on your own after the course has finished.

1

2

3

4

5

6

7

8

9

10

11

$ make api.exe

$./api.exe < test01.in

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8
Content-Length: 160

{

 "queue_head_url": "http://localhost/queue/head/",

 "queue_list_url": "http://localhost/queue/",

 "queue_tail_url": "http://localhost/queue/tail/"

}

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 9/23

https://eecs280staff.github.io/tutorials/setup_visualstudio.html#exclude-files-from-build
https://eecs280staff.github.io/tutorials/setup_visualstudio.html#exclude-files-from-build

Make sure you have created api.cpp . (VS Code (macOS), VS Code (Windows), Visual Studio,
Xcode, CLI).

Add “hello world” code if you haven’t already.

The API program should compile and run.

Configure your IDE to debug the API program.

VS Code
(macOS)

Set program name to:
${workspaceFolder}/api.exe

VS Code
(Windows)

Set program name to:
${workspaceFolder}/api.exe

Xcode
Include compile sources:
api.cpp

Visual Studio

Exclude files from the build:

Include api.cpp

Exclude List_compile_check.cpp , List_public_test.cpp ,
List_tests.cpp , main.cpp (if present)

Set up input redirection (VS Code (macOS), VS Code (Windows), XCode, Visual Studio) to read
test01.in .

To compile and run the API program with one test:

1

2

3

4

5

6

#include <iostream>
using namespace std;

int main() {
 cout << "Hello World!\n";
}

1

2

3

$ make api.exe

$./api.exe

Hello World!

1

2

$ make api.exe

$./api.exe < test01.in

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 10/23

https://eecs280staff.github.io/tutorials/setup_vscode_macos.html#add-new-files
https://eecs280staff.github.io/tutorials/setup_vscode_wsl.html#add-new-files
https://eecs280staff.github.io/tutorials/setup_visualstudio.html#add-new-files
https://eecs280staff.github.io/tutorials/setup_xcode.html#add-new-files
https://eecs280staff.github.io/tutorials/cli.html#touch
https://eecs280staff.github.io/tutorials/setup_vscode_macos.html#edit-launchjson-program
https://eecs280staff.github.io/tutorials/setup_vscode_wsl.html#edit-launchjson-program
https://eecs280staff.github.io/tutorials/setup_xcode.html#compile-sources
https://eecs280staff.github.io/tutorials/setup_visualstudio.html#exclude-files-from-build
https://eecs280staff.github.io/tutorials/setup_vscode_macos.html#input-redirection
https://eecs280staff.github.io/tutorials/setup_vscode_wsl.html#input-redirection
https://eecs280staff.github.io/tutorials/setup_xcode.html#input-redirection
https://eecs280staff.github.io/tutorials/setup_visualstudio.html#input-redirection

Libraries

A queue contains items stored in first-in-first-out order: the first item to be added is also the first one
to be removed. Queues are commonly implemented using a linked list. A linked list allows insertion
and removal at both ends, allowing items to be added at one end and removed at the other. This is
in contrast to a vector, which only allows insertion and removal at one end.

Use the standard library list so you can get started on this project right away. Later, you’ll
implement your own linked list that works just like the STL.

The REST API will implement the requests summarized in this table. The following sections provide
more detail.

Request Description

GET /api/ Read routes

GET /api/queue/ Read all queue positions

GET /api/queue/head/ Read first queue position

POST /api/queue/tail/ Create last queue position

DELETE /api/queue/head/ Delete first queue position

Design

Use a linked list containing a struct or class to store your queue. Don’t use json objects to
store your queue or the data in your queue.

Here’s an outline of how to structure your solution.

1. Read a request with cin
To read data, create a temporary json object and use cin (Reading JSON from a
stream)

2. Read or write the list data structure

3. Write a response with cout
To write data, create a temporary json object and use cout (Writing JSON to a stream)

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 11/23

http://www.cplusplus.com/reference/list/list/
file:///home/runner/work/p4-web/p4-web/_site/json.html#reading-json-from-a-stream
file:///home/runner/work/p4-web/p4-web/_site/json.html#reading-json-from-a-stream
file:///home/runner/work/p4-web/p4-web/_site/json.html#writing-json-to-a-stream

Your code should be structured in such a way that your program will return 0 if it fails to read the
beginning of a request from cin (i.e. it fails to read one of “GET /api/”, “POST /api/queue/tail/”, etc.
because of some error, including end of file). NOTE: Your code should not return from main if it
encounters an error as described in Error handling.

Sample browser session

The following is an example of a browser session that adds three people to an empty queue and
then retrieves the full queue.

The browser starts by sending a POST request to the /api/queue/tail path to add a student. The
request body includes the student’s uniqname and location.

 Pro-tip: Here’s how the instructors started their solution.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#include <list>

struct Student {
 // ...

};

class OHQueue {
public:
 void run() {
 while(/* Read request with cin */) {
 // Read or write queue member variable

 // Write response with cout

 }

 }

private:
 std::list<Student> queue;
};

int main() {
 OHQueue ohqueue;

 OHQueue.run();

}

1

2

3

POST /api/queue/tail/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 12/23

The server returns the following response, indicating success:

The browser sends a second POST request to add another student:

The server responds:

The browser adds one more student to the queue:

4

5

6

7

8

9

Content-Length: 58

{

 "uniqname": "awdeorio",
 "location": "Table 3"
}

1

2

3

4

5

6

7

8

9

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8

Content-Length: 77

{

 "location": "Table 3",
 "position": 1,
 "uniqname": "awdeorio"
}

1

2

3

4

5

6

7

8

9

POST /api/queue/tail/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 57

{

 "uniqname": "akamil",
 "location": "Table 15"
}

1

2

3

4

5

6

7

8

9

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8

Content-Length: 76

{

 "location": "Table 15",
 "position": 2,
 "uniqname": "akamil"
}

1 POST /api/queue/tail/ HTTP/1.1

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 13/23

The server response:

The browser now sends a GET request to the /api/queue/ path to obtain the entire queue:

The server responds with the contents of the queue in order:

2

3

4

5

6

7

8

9

Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 75

{

 "uniqname": "jklooste",
 "location": "Desks behind bookshelves"
}

1

2

3

4

5

6

7

8

9

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8

Content-Length: 94

{

 "location": "Desks behind bookshelves",
 "position": 3,
 "uniqname": "jklooste"
}

1

2

3

4

5

GET /api/queue/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

Content-Length: 412

{

 "count": 3,
 "results": [
 {

 "location": "Table 3",
 "position": 1,
 "uniqname": "awdeorio"
 },

 {

 "location": "Table 15",

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 14/23

The requests for this example are in the file test02.in , and the responses are in
test02.out.correct .

Request format

Every request has the same format. The only parts that change are the method (GET in this
example), the path (/api/ in this example), the content length (0 here) and the body (empty
here).

The content length in a request is the number of bytes in the body. Two newlines between the
headers and the body are not included in the content length. Each body is followed a newline, which
is included in the content length.

In this example, the two newlines separating the headers and the body are present, but the body is
empty. That is why you see a blank line at the end and Content-Length: 0 .

Response format

Every response has the same format. The only parts that change are the response code (200 in
this example), the content length (160) and the body. The body is everything inside the curly
braces { ... } followed by a trailing newline.

15

16

17

18

19

20

21

22

23

24

 "position": 2,
 "uniqname": "akamil"
 },

 {

 "location": "Desks behind bookshelves",
 "position": 3,
 "uniqname": "jklooste"
 }

]

}

1

2

3

4

5

GET /api/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 0

1

2

3

4

5

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

Content-Length: 160

{

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 15/23

Your implementation must order key-value pairs alphabetically by key. Use the process in Writing
JSON to a stream to ensure that the ordering is correct.

The content length in a response is the number of bytes in the body. Two newlines between the
headers and the body are not included in the content length. Each body is followed a newline, which
is included in the content length.

Error handling

You don’t need to handle these errors. In other words, your implementation can assume that these
things are correct:

Requests are properly formatted

HTTP method is one of GET , DELETE , or POST

Content-Length of a request is correct

All GET and DELETE requests will have a Content-Length: 0

If Content-Length: 0 , there will be no JSON body

You must handle the following errors:

HTTP path is not valid. The path must exactly match one of /api/ , /api/queue/ ,
/api/queue/head/ , or /api/queue/tail/ , including the slashes.

HTTP method is not appropriate for the path. For example, POST /api/ .

If one of the errors above occurs, read the remainder of the request, including any headers or body.
Then, return the following response after reading the entire request. Note that there is a blank line
after Content-Length: 0 .

GET /api/

6

7

8

9

 "queue_head_url": "http://localhost/queue/head/",
 "queue_list_url": "http://localhost/queue/",
 "queue_tail_url": "http://localhost/queue/tail/"
}

 Pro-tip: Compute the content length like the example in Writing JSON to a stream.

1

2

3

4

HTTP/1.1 400 Bad Request
Content-Type: application/json; charset=utf-8

Content-Length: 0

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 16/23

file:///home/runner/work/p4-web/p4-web/_site/json.html#writing-json-to-a-stream
file:///home/runner/work/p4-web/p4-web/_site/json.html#writing-json-to-a-stream
file:///home/runner/work/p4-web/p4-web/_site/json.html#writing-json-to-a-stream

The /api/ route accepts a GET request and returns a list of URLs supported by this REST API. It
always returns the same data. See the examples in Request format and Response format for the
input and output for this path.

Run the unit test.

POST /api/queue/tail/

The /api/queue/tail/ route accepts a POST request and creates one new person on the queue.
As a simplification, we do not check if a person is already on the queue, thus the same uniqname
may appear multiple times.

Example request

Example response

1

2

3

$ make api.exe

$./api.exe < test01.in > test01.out
$ diff test01.out test01.out.correct

 Pro-tip: Debug output differences using diff -y -B , which shows differences side-by-
side and ignores whitespace. We’ll use the less pager so we can scroll through the long
terminal output. Press q to quit.

1

2

$./api.exe < test01.in > test01.out
$ diff -y -B test01.out test01.out.correct | less # q to quit

1

2

3

4

5

6

7

8

9

POST /api/queue/tail/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 58

{

 "uniqname": "jackgood",
 "location": "Table 5"
}

1

2

3

4

5

6

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8

Content-Length: 77

{

 "location": "Table 5",

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 17/23

Run the unit test.

GET /api/queue/head/

The /api/queue/head route accepts a GET request and returns the person at the head of the
queue. Fields are in the order shown by the example, and the person at the head of the queue
always has position 1. If the queue is empty, return a 400 error.

Example request

Example response

Run the unit test.

GET /api/queue/

7

8

9

 "position": 1,
 "uniqname": "jackgood"
}

1

2

3

$ make api.exe

$./api.exe < test04.in > test04.out
$ diff test04.out test04.out.correct

1

2

3

4

5

GET /api/queue/head/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 0

1

2

3

4

5

6

7

8

9

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

Content-Length: 77

{

 "location": "Table 3",
 "position": 1,
 "uniqname": "awdeorio"
}

1

2

3

$ make api.exe

$./api.exe < test03.in > test03.out
$ diff test03.out test03.out.correct

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 18/23

The /api/queue/ route accepts a GET request and returns a list of everyone on the queue,
including location , position and uniqname in that order. The list is ordered by position, which
always starts with 1 for the person currently at the head of the queue.

Example request

Example response

If the queue is empty, the response should be:

1

2

3

4

5

GET /api/queue/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

Content-Length: 412

{

 "count": 3,
 "results": [
 {

 "location": "Table 3",
 "position": 1,
 "uniqname": "awdeorio"
 },

 {

 "location": "Table 15",
 "position": 2,
 "uniqname": "akamil"
 },

 {

 "location": "Desks behind bookshelves",
 "position": 3,
 "uniqname": "jklooste"
 }

]

}

1

2

3

4

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

Content-Length: 40

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 19/23

Run the unit test.

DELETE /api/queue/head/

The /api/queue/head/ route accepts a DELETE request and removes the person at the head of
the queue.

Example request

Example response

If the queue is empty, return a 400 error.

Run the unit test.

Real web server (Optional)

Once you have a working solution for the office hours queue API as specified, you have a working
back-end for a real office hours queue web server!

First, make sure your API passes all the unit tests.

5

6

7

8

{

 "count": 0,
 "results": null
}

1

2

3

$ make api.exe

$./api.exe < test02.in > test02.out
$ diff test02.out test02.out.correct

1

2

3

4

5

DELETE /api/queue/head/ HTTP/1.1
Host: localhost

Content-Type: application/json; charset=utf-8

Content-Length: 0

1

2

3

4

HTTP/1.1 204 No Content
Content-Type: application/json; charset=utf-8

Content-Length: 0

1

2

3

$ make api.exe

$./api.exe < test05.in > test05.out
$ diff test05.out test05.out.correct

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 20/23

Build and start the server. You might need to install Python 3 with brew install python3 (macOS)
or apt-get install python3 (WSL or Linux).

In a web browser, navigate to http://localhost:8000/index.html. You should see a web page. A
shortcut is http://localhost:8000.

Now try http://localhost:8000/api/. You should see JSON data.

Your browser is sending a GET request over the network. Let’s try it using the command line using a
second terminal.

The server.py script listens for incoming network requests. If the client request path starts with
/api , it copies the request to the stdin of api.exe and copies the stdout of api.exe back to the

client. Otherwise, server.py copies a file to the client over the network (e.g., index.html).

Visual Studio Note: If you are working on Windows and use Visual Studio (not to be confused with
Visual Studio Code), compile api.exe from the Ubuntu (WSL) terminal (make api.exe), just for
this demo. This avoids a problem with Windows vs. Linux line endings when running server.py .

API Tests

Run all the API tests.

Submission and grading

Submit these files to the autograder.

List.hpp

List_tests.cpp

$ make test-api

1

2

3

$ make api.exe

$ python3 server.py

Starting server on localhost:8000

1

2

3

4

5

6

$ curl localhost:8000/api/

{

 "queue_head_url": "http://localhost/queue/head/",

 "queue_list_url": "http://localhost/queue/",

 "queue_tail_url": "http://localhost/queue/tail/"

}

$ make test-api

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 21/23

http://localhost:8000/index.html
http://localhost:8000/
http://localhost:8000/api/
https://autograder.io/

This project will be autograded for correctness, comprehensiveness of your test cases, and
programming style. See the style checking tutorial for the criteria and how to check your style
automatically on CAEN.

Testing

Check for memory leaks using the Leak checking tutorial.

Run all the unit tests and system tests. This includes the public tests we provided and the unit tests
that you wrote.

Unit Test Grading

We will autograde your List unit tests.

Your unit tests must use the unit test framework.

A test suite must complete less than 5 seconds and contain 50 or fewer TEST() items. One test
suite is one _tests.cpp file.

To grade your unit tests, we use a set of intentionally buggy instructor solutions. You get points for
catching the bugs.

1. We compile and run your unit tests with a correct solution.
Tests that pass are valid.

Tests that fail are invalid, they falsely report a bug.

2. We compile and run all of your valid tests against each buggy solution.
If any of your tests fail, you caught the bug.

You earn points for each bug that you catch.

Requirements and restrictions

It is our goal for you to gain practice with good C++ code, classes, and dynamic memory.

$ make test

 Pro-tip: Run commands in parallel with make -j .

$ make -j4 test

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 22/23

https://eecs280staff.github.io/tutorials/setup_style.html
https://eecs280staff.github.io/tutorials/setup_leakcheck.html
https://eecs280staff.github.io/unit_test_framework/

DO DO NOT

Modify .cpp files and List.hpp Modify other .hpp files

For List , make helper member functions
private

Modify the public interface of List

Use these libraries: <iostream> , <string> ,
<cassert> , <sstream> , <utility>

Use other libraries

Use <list> (and optionally <algorithm>) in
api.cpp

Use <algorithm> , <list> , or other
containers in List.hpp

#include a library to use its functions
Assume that the compiler will find the
library for you (some do, some don’t)

Use C++ strings Use C-strings

Send all output to standard out (AKA stdout) by
using cout

Send any output to standard error (AKA
stderr) by using cerr

Pass large structs or classes by reference Pass large structs or classes by value

Pass by const reference when appropriate “I don’t think I’ll modify it …”

Use the Address Sanitizer to check for memory
errors

“It’s probably fine…”

Acknowledgments

Original project written by Andrew DeOrio awdeorio@umich.edu, winter 2019.

This document is licensed under a Creative Commons Attribution-NonCommercial 4.0 License.
You’re free to copy and share this document, but not to sell it. You may not share source code
provided with this document.

2/21/25, 7:46 PM p4-web

file:///home/runner/work/p4-web/p4-web/_site/index.html 23/23

https://eecs280staff.github.io/tutorials/setup_asan.html
mailto:awdeorio@umich.edu
https://creativecommons.org/licenses/by-nc/4.0/

