
Unit Test Framework

Tutorial: Unit Test Framework
In this tutorial, you will learn how to write test cases using a lightweight framework that functions
similarly to unit test frameworks used in real-life software development.

Setting Up

First, you will need the file unit_test_framework.hpp . This file is included with the starter code for
EECS 280 projects where you are expected to use it. You can also download it directly (e.g. for this
tutorial) with the following command.

For this tutorial, you’ll need three starter files, tutorial.hpp , tutorial.cpp , and Makefile .

These functions contain implementations of two functions (slideRight() and flip()) that work
with vectors. The implementations each contain a bug! You’ll catch the bugs by writing tests.

Your tests should go in a new file, called tutorial_tests.cpp . Add the following code to
tutorial_tests.cpp :

$ wget
https://raw.githubusercontent.com/eecs280staff/unit_test_framework/main/unit_test_f

1

2

3

$ wget https://eecs280staff.github.io/unit_test_framework/tutorial.hpp

$ wget https://eecs280staff.github.io/unit_test_framework/tutorial.cpp

$ wget https://eecs280staff.github.io/unit_test_framework/Makefile

1

2

3

4

5

6

7

8

9

10

11

12

#include "tutorial.hpp"
#include "unit_test_framework.hpp"

// We define a test case with the TEST(<test_name>) macro.

// <test_name> can be any valid C++ function name.

TEST(true_is_true) {

 ASSERT_TRUE(true);

}

TEST(numbers_are_equal) {

 ASSERT_EQUAL(42, 42);

}

4/4/25, 4:08 PM Unit Test Framework

file:///home/runner/work/unit_test_framework/unit_test_framework/_site/index.html 1/7

https://eecs280staff.github.io/unit_test_framework/

These are just example tests… we’ll get to “real” tests for our vector functions soon.

You’re probably wondering why some of the syntax in this code looks unusual. That’s because this
testing framework uses preprocessor macros to achieve functionality that wouldn’t be possible with
the plain C++ you’re used to seeing. Preprocessor macros are beyond the scope of this course and
in general should be used sparingly, so here’s all you need to know:

The TEST(<test_name>) essentially gets replaced (by the preprocessor) with a test function
called <test_name> , where <test_name> is any valid C++ function name and <test_name>
will be the name of the new test function. You do NOT need to put quotes around
<test_name> , and if you do you’ll get a compiler error.

TEST_MAIN() gets replaced by a main() function that detects and runs all of the test cases
you defined using the TEST() macro. Unlike in Project 1 where you had to explicitly call your
test functions from main() , this framework handles that for you!

ASSERT_TRUE() is one of several special test assertion preprocessor macros that you can use
to check conditions in your test cases. You’ll be using these instead of assert() in your unit
tests. These will be demonstrated in more detail in the next section.

Compile and run this test case with the following two commands:

Another nice feature of the framework is that we can tell it to run only a subset of our test cases. If
we wanted to only run the test numbers_are_equal , we could do it with this command:

13

14 TEST_MAIN() // No semicolon!

1

2

3

4

5

6

7

8

9

10

11

12

13

$ make tutorial_tests.exe

$./tutorial_tests.exe

Running test: numbers_are_equal

PASS

Running test: true_is_true

PASS

*** Results ***

** Test case 'numbers_are_equal': PASS

** Test case 'true_is_true': PASS

*** Summary ***

Out of 2 tests run:

0 failure(s), 0 error(s)

1

2

3

$./tutorial_tests.exe numbers_are_equal

Running test: numbers_are_equal

PASS

4/4/25, 4:08 PM Unit Test Framework

file:///home/runner/work/unit_test_framework/unit_test_framework/_site/index.html 2/7

You can pass any number of test names as command line arguments, and it will only run the ones
you’ve specified.

Special Test Assertions

One of the main reasons for using the special assertions provided by the framework is that they
allow the framework to run all of your tests and report which ones passed and which ones failed. As
you may have noticed, when you use regular assert() in your test cases, they automatically stop
at the first failure. This can make it difficult to debug errors in one test that are actually caused by a
function whose test cases didn’t get a chance to run yet.

Here is a summary of all the special assertions that the framework provides:

Assertion Description

ASSERT_EQUAL(first, second)

If first == second evaluates to false, the test
will fail. Note: Do not use this if first and
second are not comparable using the ==

operator. Other than this restriction, first and
second may be any type.

ASSERT_NOT_EQUAL(first, second)

If first != second evaluates to false, the test
will fail. Note: Do not use this if first and
second are not comparable using the != operator.

Other than this restriction, first and second
may be any type.

ASSERT_TRUE(bool value) If value is false, the test will fail.

ASSERT_FALSE(bool value) If value is true, the test will fail.

ASSERT_ALMOST_EQUAL(double first,

double second, double precision)

If first and second are not equal within
precision , the test will fail.

ASSERT_SEQUENCE_EQUAL(first,

second)

first and second must be sequences (e.g.
arrays, vectors, lists). If first and second do
not have equal elements, the test will fail.

4

5

6

7

8

9

*** Results ***

** Test case 'numbers_are_equal': PASS

*** Summary ***

Out of 1 tests run:

0 failure(s), 0 error(s)

4/4/25, 4:08 PM Unit Test Framework

file:///home/runner/work/unit_test_framework/unit_test_framework/_site/index.html 3/7

Example: Tests for an add() function

Consider the add() function, declared in tutorial.hpp and defined in tutorial.cpp :

A thorough set of tests for this function would include several tests for basic functionality, as well as
any special cases, such as adding 0, negative numbers, or non-integer floating point numbers.
Here’s an example:

Note that the add_floating_point test case uses ASSERT_ALMOST_EQUAL() with a tolerance of
0.001 instead of ASSERT_EQUAL() or == . You should always use the “almost” version when

comparing results that might be slightly different due to limited numeric precision. (For example,
0.1 + 0.2 == 0.3 will yield false for most C++ implementations.)

Feel free to add these tests to tutorial_tests.cpp and run them to see how they work. For
example:

1

2

3

double add(double first, double second) {
 return first + second;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

TEST(add_basic) {

 ASSERT_EQUAL(add(2, 2), 4);

 ASSERT_EQUAL(add(2, 3), 5);

 ASSERT_EQUAL(add(5, 0), 5);

 ASSERT_EQUAL(add(0, 0), 0);

}

TEST(add_negative) {

 ASSERT_EQUAL(add(2, -2), 0);
 ASSERT_EQUAL(add(3, -5), -2);
 ASSERT_EQUAL(add(-3, 5), 2);
 ASSERT_EQUAL(add(-5, -5), -10);
}

TEST(add_floating_point) {

 ASSERT_ALMOST_EQUAL(add(0.1, 0.2), 0.3, 0.001);

 ASSERT_ALMOST_EQUAL(add(0.1, 0.1), 0.2, 0.001);

 ASSERT_ALMOST_EQUAL(add(0.1, -0.1), 0.0, 0.001);
 ASSERT_ALMOST_EQUAL(add(-0.1, -0.1), -0.2, 0.001);
}

1

2

3

$ make tutorial_tests.exe

$./tutorial_tests.exe

Running test: add_basic

4/4/25, 4:08 PM Unit Test Framework

file:///home/runner/work/unit_test_framework/unit_test_framework/_site/index.html 4/7

Exercise: Writing Unit Tests for slideright() and
flip() vector functions

Now, let’s add some real test cases for slideRight() and flip() to tutorial_tests.cpp .

For example, here’s one test for each function (you can replace your existing code in
tutorial_tests.cpp with the code below). Note the use of ASSERT_SEQUENCE_EQUAL() to verify

the contents of two vectors are equal.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

PASS

Running test: add_floating_point

PASS

Running test: add_negative

PASS

Running test: numbers_are_equal

PASS

Running test: true_is_true

PASS

*** Results ***

** Test case "add_basic": PASS

** Test case "add_floating_point": PASS

** Test case "add_negative": PASS

** Test case "numbers_are_equal": PASS

** Test case "true_is_true": PASS

*** Summary ***

Out of 5 tests run:

0 failure(s), 0 error(s)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#include <vector>
#include "tutorial.hpp"
#include "unit_test_framework.hpp"

using namespace std;

TEST(test_slide_right_1) {

 vector<int> v = { 4, 0, 1, 3, 3 };
 vector<int> expected = { 3, 4, 0, 1, 3 };
 slideRight(v);

 ASSERT_SEQUENCE_EQUAL(v, expected);

}

TEST(test_flip_1) {

4/4/25, 4:08 PM Unit Test Framework

file:///home/runner/work/unit_test_framework/unit_test_framework/_site/index.html 5/7

Compile and run the tests with the following commands:

A failed test indicates there’s a bug in our tutorial.cpp code. The tests above caught the bug in
slideRight but not the one in flip (recall we mentioned there is a bug in both). You’ll need to

write more tests to create a thorough testing suite! Ideally, you should have enough tests that any
reasonable bug will cause at least one test to fail.

On the other hand, when run against a correct implementation, all of your tests should pass.
(Otherwise, it would be giving a false positive for detecting a bug.) If a test passes on a correct
implementation, we call it valid.

Once you feel your tests are thorough, submit tutorial_tests.cpp to the unit test framework
tutorial autograder. The autograder will check your tests against a set of buggy implementations of
slideRight and flip , similar to the buggy versions functions provided with this tutorial. To earn

points, your tests must detect (i.e. fail when run against) each of the bugs. Note that the autograder
will discard any tests that are not valid when checked against a correct solution.

15

16

17

18

19

20

21

 vector<int> v = { 4, 0, 1, 3, 3 };
 vector<int> expected = { 3, 3, 1, 0, 4 };
 flip(v);

 ASSERT_SEQUENCE_EQUAL(v, expected);

}

TEST_MAIN() // No semicolon!

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

$ make tutorial_tests.exe

$./tutorial_tests.exe

Running test: test_flip_1

PASS

Running test: test_slide_right_1

FAIL

*** Results ***

** Test case "test_flip_1": PASS

** Test case "test_slide_right_1": FAIL

In ASSERT_SEQUENCE_EQUAL(v, expected), line 11:

{ 4, 4, 4, 4, 4 } != { 3, 4, 0, 1, 3 } (elements at position 0 differ: 4 != 3)

*** Summary ***

Out of 2 tests run:

1 failure(s), 0 error(s)

4/4/25, 4:08 PM Unit Test Framework

file:///home/runner/work/unit_test_framework/unit_test_framework/_site/index.html 6/7

https://autograder.io/

 Note: Because these functions work with vectors, it’s possible that a buggy version might go
outside the bounds of the vector when given one of your tests, causing a segfault or other
crash. For example:

This still “counts” as catching the bug, because the program exits with a non-zero exit status
(as is the case for a failed ASSERT) and we are alerted to the presence of a bug.

1

2

3

4

5

$./tutorial_tests.exe

Running test: test_flip_1

PASS

Running test: test_flip_2

Segmentation fault

4/4/25, 4:08 PM Unit Test Framework

file:///home/runner/work/unit_test_framework/unit_test_framework/_site/index.html 7/7

